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We present a theory of the Hall effect in dense-packed granular systems at large tunneling conductance
gT�1 �metallic regime�. The Hall transport is essentially determined by the intragrain electron dynamics
which, as we find using the Kubo formula and diagrammatic technique, can be described by nonzero diffusion
modes inside the grains. We show that in the absence of quantum effects the Hall resistivity �xy depends neither
on the tunneling conductance nor on the intragrain disorder and is given by the classical formula �xy

=H / �n*ec�, where n* differs from the carrier density n inside the grains by a numerical coefficient determined
by the shape of the grains and type of granular lattice. We then study the quantum effects of the Coulomb
interaction and weak localization by calculating the first order in 1 /gT corrections and find that �i� in a wide
range of temperatures T�� exceeding the tunneling escape rate �, the Coulomb interaction gives rise to the
logarithmic-in-T correction to �xy, which is of local origin and absent in conventional disordered metals; �ii�
the large-scale “Altshuler-Aronov” correction to the Hall conductivity �xy vanishes, ��xy

AA=0; �iii� the weak
localization correction to the Hall resistivity �xy vanishes, ��xy

WL=0. The results �ii� and �iii� are in agreement
with the theory of conventional disordered metals.
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I. INTRODUCTION

Hall transport in different systems has always been a sub-
ject of extensive research. Already the classical Drude-
Boltzmann theory provides us with an interesting result. It is
well known that the Hall resistivity �HR�

�xy =
H

nec
�1.1�

of a disordered metal does not depend on the mean-free path
and is determined solely by the carrier concentration n al-
lowing one to extract it experimentally. At low enough tem-
peratures quantum effects of Coulomb interaction and weak
localization �see, e.g., Refs. 1 and 2� influence the Hall trans-
port, giving corrections to Eq. �1.1�.

Dense-packed arrays of metallic or semiconducting nano-
particles imbedded into an insulating matrix, usually called
granular systems or nanocrystals, have recently received
much attention from both experimental and theoretical sides
�see Ref. 3 and references therein�. The longitudinal trans-
port in such systems is theoretically well understood now,
both in the metallic4,5 and insulating6–8 regimes. At the same
time, Hall transport in such granular materials has not been
addressed theoretically before, neither in the insulating nor in
the metallic regimes. The absence of a theoretical description
is apparently one of the reasons why measurements of the
Hall resistivity have not become a standard tool for charac-
terization of granular metals, although they do not seem to be
very difficult.

In the metallic regime, when the intergrain tunneling con-
ductance GT= �2e2 /��gT is large,

gT � 1,

the granular system is, roughly speaking, a good conductor
and its properties are quite similar to those of ordinary “ho-
mogeneously” disordered metals �HDMs�. Further, we refer

to the granular system in the metallic regime as “granular
metal.” So, trying to apply the conventional theory of disor-
dered metals to granular metals, the following questions can
be asked: �i� To what extent is the formula �1.1� for the Hall
resistivity applicable to granular metals? �ii� How is the car-
rier concentration extracted from Eq. �1.1� related to the ac-
tual carrier concentration in the grains? �iii� What impact do
quantum effects, such as Coulomb interaction and weak lo-
calization, have on the Hall transport in a granular metal?
�iv� Are these quantum effects completely analogous to those
in conventional disordered metals or do there exist contribu-
tions, which are specific to granular metals only and are ab-
sent in ordinary disordered metals?

In this paper we present a theory of the Hall effect in a
granular system in the metallic regime and answer these
questions.

The granularity of the system brings a physical aspect
absent in HDMs: confinement of electrons inside the grains.
In a system with “well-pronounced” granularity, an electron
traverses each grain many times before it escapes from it to
some neighboring grain due to tunneling. Analytically, this
fact is described by the condition that the tunneling escape
rate � is much smaller than the Thouless energy ETh of the
grain:

� 	 ETh, �1.2�

or, equivalently, the tunneling conductance GT is much
smaller than the longitudinal conductance G0= �2e2 /��g0 of
the grain,

gT 	 g0, �1.3�

since �=gT� and ETh
g0� �� is the mean level spacing of
the grain�.

The conditions �1.2� and �1.3�, leading to physics3 absent
in HDMs, simplify the calculations at the same time. Con-
sider, for example, the classical �in the absence of quantum
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effects, such as Coulomb interaction and weak localization�
longitudinal conductivity �LC� �xx

�0� of a regular quadratic or
cubic granular lattice �Fig. 1� with all contacts having equal
conductances GT. In the limit gT	g0 the main contribution
to the longitudinal resistivity �LR� �xx

�0�=1 /�xx
�0� comes from

the tunnel barriers between the grains rather than from scat-
tering on impurities inside the grains and LC equals

�xx
�0� = GTa2−d, �1.4�

where a is the size of the grains and d=2,3 is the dimen-
sionality of the array. The longitudinal conductance G0 of the
grain itself, which, in principle, should be obtained from a
solution of a classical electrodynamics problem for the dis-
tribution of the electric potential inside the grain and is,
therefore, determined by the properties of the intragrain elec-
tron dynamics, does not enter Eq. �1.4�. Thus, when studying
the longitudinal transport one may neglect the details of elec-
tron dynamics inside the grains, which is a significant sim-
plification. Technically, this is equivalent to considering only
the zero �i.e., coordinate-independent inside the grains� spa-
tial modes of the diffusons or phases in the phase
functional.3,4 Owing to the conditions �1.2� and �1.3�, the
zero-mode approximation suffices for studying the longitudi-
nal transport.

For Hall transport, however, the situation appears to be
more complicated. The Hall current originates from the
transversal drift in the crossed magnetic and electric fields
inside the grains. The classically prohibited regions of tunnel
contacts are neglegibly small for dense-packed arrays and
cannot contribute to the Hall transport. From simple classical
considerations �see Fig. 1 and caption�, one obtains that the
Hall conductivity �HC� �xy

�0� in the leading in gT /g0	1 order
is

�xy
�0� = GT

2RHa2−d, �1.5�

where RH is the Hall resistance of the grain. Just like G0, the
Hall resistance RH should be obtained from a solution of a

classical electrodynamics problem for the distribution of the
electric potential inside the grain. We come to the situation
when one is forced to take the intragrain electron dynamics
into account, no matter how well the conditions �1.2� and
�1.3� are satisfied. In other words, the zero-mode approxima-
tion is not sufficient for the description of the Hall transport
of a granular system.

However, a purely classical approach to the problem, giv-
ing a quick answer �1.5�, does not allow one to include quan-
tum effects �such as the Coulomb interaction and weak lo-
calization� into considerations, which come into play at
sufficiently low temperatures and can significantly affect the
transport properties. To do so, a more sophisticated quantum-
mechanical approach is needed.

In this work we develop a method of calculating conduc-
tivity of a granular system in the metallic regime, which
allows one to take the intragrain electron dynamics into ac-
count. Using the Kubo formula and diagrammatic technique,
we show that this can be done by considering nonzero �i.e.,
coordinate-dependent� spatial modes of the standard two-
particle propagators �“diffusons”� inside the grains. This pro-
cedures accounts for the finiteness of the ratio gT /g0 and
reproduces the solution of the classical electrodynamics
problem for the conductivity of a granular medium. The gen-
erality of our approach allows one, in principle, to study both
LC and HC of the granular system for arbitrary ratio gT /g0

and for arbitrary type of the intragrain electron dynamics,
either ballistic or diffusive. Nonzero modes of the diffusons
are eventually related to the longitudinal G0

−1 and Hall RH
resistances of the grain.

We apply our method to the problem of Hall transport, for
which considering intragrain dynamics is inevitable. Ne-
glecting quantum effects, we do recover the classical formula
�1.5� for the Hall conductivity and obtain quite a universal
result for the Hall resistivity. A diagrammatic approach al-
lows us to include the quantum effects of Coulomb interac-
tion and weak localization straightforwardly into the devel-
oped scheme. We study the influence of these effects on HC
and HR by calculating the first-order corrections. We find
that the major temperature dependence of both HC and HR
of a granular metal is due to the Coulomb interaction and
comes from the short-scale contributions that are absent in
HDMs. Part of the results of this work was presented in a
brief form in Ref. 9.

The paper is organized as follows. In Sec. II we present
the main results of this work. In Sec. III the model for the
granular system is formulated and discussed. In Sec. IV the
main features of the diagrammatic technique are explained,
and important building blocks, namely, the intragrain diffu-
son in the presence of the magnetic field and the screened
Coulomb interaction, are obtained. The boundary condition
for the diffuson, which plays a central role in our theory of
the Hall effect, is derived. In Sec. V we calculate the Hall
conductivity and resistivity neglecting quantum effects and
obtain the correspondence with the classical result. Quantum
effects of the Coulomb interaction are studied in Sec. VI.
Weak localization effects are studied in Sec. VII. Concluding
remarks are presented in Sec. VIII.

FIG. 1. Granular system and the classical picture of the Hall
conductivity. The external Ohmic voltage Vy is applied to the con-
tacts in the y direction. The resulting Ohmic current Iy =GTVy run-
ning through the grain in the y direction causes the Hall voltage
drop VH=RHIy between its opposite banks in the x direction. Since
for calculating Hall conductivity �xy the total voltage drop per lat-
tice period in the x direction is assumed 0, the Hall voltage VH is
also applied �with an opposite sign� to the contacts in the x direc-
tion, causing the Hall current Ix=GTVH=GT

2RHVy �see Eq. �1.5��.
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II. RESULTS

For the reader’s convenience, in this section we list the
main results of this work. We perform calculations for the
magnetic fields H such that

�H�0 	 1, �2.1�

where �H=eH / �mc� is the cyclotron frequency and �0 is the
electron scattering time inside the grain. Since the �effective�
electron mean-free path l=vF�0a cannot exceed the grain
size a, and typically a�1–100 nm, the condition �2.1� is
well fulfilled even for experimentally high fields H. We also
assume that the granularity of the system is “well pro-
nounced,” i.e., the conditions �1.2� and �1.3� are satisfied.
Other assumptions and approximations are formulated in
Sec. III.

A. Classical Hall conductivity and resistivity

First we study the Hall transport neglecting quantum ef-
fects of the Coulomb interaction and weak localization. In
the lowest nonvanishing order in gT /g0	1, we obtain Eq.
�1.5� for the Hall conductivity �xy

�0�. We show that this result,
obtained using the diagrammatic methods, is of completely
classical origin provided the tunnel contacts are viewed as
surface resistors with conductance GT. The Hall resistivity of
the system

�xy
�0� =

�xy
�0�

��xx
�0��2 = RHad−2 �2.2�

following from Eqs. �1.4� and �1.5� thus does not depend on
the tunneling conductance GT and is expressed solely
through the Hall resistance RH of a single grain. Further, we
show that the Hall resistance RH does not depend on the
intragrain disorder, but only on the geometry of the grain
and on the carrier density n of the grain material. For grains
of a simple geometry �e.g., having reflectional symmetry in
all three dimensions�

RH = �xy
gr a

S
,

where �xy
gr =H / �nec� is the specific Hall resistivity of the

grain material and S is the area of the largest cross section of
the grain.

Therefore, akin to the universal result �1.1� for ordinary
disordered metals, for the classical Hall resistivity of a
granular metal we obtain

�xy
�0� =

H

n*ec
�2.3�

in the case of a three-dimensional sample ��3D� d=3, many
grain monolayers�. Here

n* = An, A =
S

a2 � 1

is the effective carrier density of the system, which differs
from the actual carrier density n inside the grains only by a
numerical factor A determined by the shape of the grains

�A=� /4 for spherical and A=1 for cubic grains�. For a two-
dimensional sample ��2D� d=2, one or a few grain monolay-
ers� the expression �2.3� must divided by the thickness dz of
the sample or, equivalently, n*=dzAn in this case.10

The result �2.3� for the Hall resistivity �xy
�0� is quite universal.

It is valid even if �i� the tunneling conductances GT differ
from contact to contact and �ii� the mean-free path l differs
from grain to grain: HR is simply independent of the distri-
butions of GT and l; therefore, Eq. �2.3� is applicable to real
granular arrays in which such irregularities are always
present �provided such a system is still in the metallic re-
gime�. We also note that although Eq. �2.2� was obtained for
a regular quadratic or cubic granular lattice, the result �2.3�
with a different factor A�1 remains valid for other regular
lattices �e.g., more common for real experimental samples
triangular lattice�. We also expect Eq. �2.3� to hold �with a
different factor A�1� for arrays with moderate structural
disorder, i.e., in which the positions of the grains deviate
from regular and their sizes and shapes are not identical.

B. Coulomb interaction corrections

Next we calculate the first order in 1 /gT quantum correc-
tions to the Hall conductivity �xy

�0� �Eq. �1.5�� due to Coulomb
interaction. We find significant contributions for tempera-
tures TgTEc not exceeding the inverse RC time gTEc of the
system “grain+contact” �Ec=e2 / ��a� is the charging energy
and � is the dielectric constant of the array�, whereas for
T�gTEc the relative corrections are of the order of 1 /gT

or smaller. Three types of corrections to HC �xy
�0� �Eq. �1.5��

can be identified, which we denote as ��xy
TA, ��xy

VD, and ��xy
AA.

The first correction ��xy
TA can be attributed to the renor-

malization of the individual tunneling conductances GT �tun-
neling anomaly �TA�1,11,12� in the granular medium and has
the form

��xy
TA�T�
�xy

�0� = −
1

�gTd
ln� gTEc

max�T,��� for T  gTEc.

�2.4�

This correction renormalizes the tunneling conductances GT
in Eq. �1.5�, but does not affect the Hall resistance RH of the
grain.

The second correction ��xy
VD corresponds to the process of

virtual diffusion �VD� of electrons through the grain and
equals

��xy
VD�T�
�xy

�0� =
cd

4�gT
ln�min�gTEc,ETh�

max�T,�� � �2.5�

for Tmin�gTEc ,ETh�, where cd�1 is a numerical lattice
structure factor �6.23�. Contrary to ��xy

TA, the correction ��xy
VD

is suppressed at temperatures greater than the Thouless en-
ergy of the grain ETh, which emphasizes its diffusion char-
acter.

For T�� both corrections ��xy
TA and ��xy

VD are ln T depen-
dent. This dependence saturates at temperatures T�� of the
order of the tunneling escape rate �, so that ��xy

TA and ��xy
VD

remain logarithmically large constants at T�. These two
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corrections are specific for granular systems and, in essence,
due to the strong discrepancy of time scales of the intragrain
�ETh

−1� and intergrain ��−1� electron dynamics described by
the condition �1.2�. They arise from spatial scales of the or-
der of the grain size a and are absent in HDMs. The loga-
rithmic behavior of the corrections �2.4� and �2.5� is due to
the form of the screened Coulomb interaction in granular
systems.13 They have the same logarithmic form in 2D and
3D, but the coefficients are not universal and lattice depen-
dent: 1 /d and cd �Eq. �6.23�� are the results for the cubic
�3D� or quadratic �2D� lattice, which we assumed in our
calculations.

The third correction ��xy
AA due to the Coulomb interaction

is analogous to the one present in homogeneously disordered
metals1 �“Altshuler-Aronov” �AA� corrections�. It can be sig-
nificant at low temperatures T	� only, when the thermal
length LT=	D0

* /T�a for the intergrain motion exceeds
the grain size a �D0

*=�a2 is the effective diffusion coefficient
for the intergrain electron motion at scales greater than a�.
However, we find that this correction vanishes identically
both in 2D and 3D,

��xy
AA = 0. �2.6�

C. Weak localization corrections

Finally, we calculate weak localization �WL� corrections
and find that the relative correction to HC is twice as large as
the one to LC,

��xy
WL

�xy
�0� = 2

��xx
WL

�xx
�0� . �2.7�

The WL correction ��xx
WL to LC of a granular metal was

studied in Refs. 14–16. Significant �logarithmic� contribu-
tions may arise in 2D samples only and from spatial scales
greater than the grain size a, when the inverse dephasing
time 1 /��� �if 1 /��
T /gT,14,15 this corresponds to T
gT��. In this regime, at zero magnetic field H=0, the cor-
rection has the form

��xx
WL�T,H = 0�
�xx

�0� = −
1

4�2gT
ln����� . �2.8�

The dependence of the WL correction ��xx
WL�T ,H� to LC on

the magnetic field H was also studied in Refs. 15 and 16.
It is always instructive to compare the results for a granu-

lar metal with those for a HDM. The quantities arising from
large spatial scales �exceeding the grain size a for a granular
metal and the mean-free path l for a HDM� are expected to
behave universally, because at such scales the microscopic
structure of the system becomes irrelevant. This should be
the case for the Altshuler-Aronov and weak localization cor-
rections. Indeed, the results �2.6� for ��xy

AA and �2.7� for ��xy
WL

agree with those for HDMs first obtained in Refs. 17 and 18,
respectively.

D. Hall Conductivity

Combining Eqs. �1.5� and �2.4�–�2.7�, for the Hall con-
ductivity including the first-order quantum corrections, we
obtain

�xy = �xy
�0� + ��xy

TA + ��xy
VD + ��xy

AA + ��xy
WL. �2.9�

The quantity directly measured in the experiments, how-
ever, is the Hall resistivity

�xy =
�xy

�xx
2 . �2.10�

In order to obtain �xy, one needs to know not only HC �xy
�Eq. �2.9��, but also LC. The interaction corrections to LC
were studied in Refs. 4 and 5 and weak localization correc-
tion to LC in Refs. 14–16. Combining these findings, one
can write LC as

�xx = �xx
�0� + ��xx

TA + ��xx
AA + ��xx

WL. �2.11�

Here, �xx
�0� is the bare LC given by Eq. �1.4�, the first two

corrections ��xx
TA and ��xx

AA are due to the Coulomb interac-
tion ���xx

TA and ��xx
AA correspond to ��1, Eq. �2b�, and ��2,

Eq. �2c�, in Ref. 5, respectively� and ��xx
WL is the weak local-

ization correction �see above�. The correction ��xx
TA is due to

the tunneling anomaly in granular metal. It renormalizes the
tunneling conductance GT in Eq. �1.4� and equals

��xx
TA�T�
�xx

�0� = −
1

2�gTd
ln� gTEc

max�T,��� for T  gTEc.

�2.12�

This correction is of local origin and governs the temperature
dependence of LC �xx�T� in a wide temperature range. The
Hall counterpart of ��xx

TA is ��xy
TA �Eq. �2.4��.

The correction ��xx
AA is analogous to the Altshuler-Aronov

correction in a HDM19,20 and its Hall counterpart is ��xy
AA

�Eq. �2.6��. The AA correction ��xx
AA does not diverge at large

spatial scales in 3D case, being smaller than the logarithmic
contributions �2.4�, �2.5�, and �2.12� for all relevant tempera-
tures down to very low ones,5 ��xx

AA /�xx
�0�1 /gT.

In the 2D case,21 i.e., for granular films of thickness dz
consisting of one or a few grain monolayers �dz /a is the
number of monolayers�, the correction ��xx

AA is diverging at
large spatial scales. This divergence is relevant for low tem-
peratures T	��a /dz�2 �when LT

*�dz�, for which ��xx
AA ac-

quires a logarithmic dependence5

��xx
AA�T�
�xx

�0� = −
1

4�2gT
ln��

T

 a

dz
�2� . �2.13�

E. Hall resistivity

Combining Eqs. �2.9� and �2.11�, we can write down the
Hall resistivity �Eq. �2.10�� as

�xy = �xy
�0� + ��xy

TA + ��xy
VD + ��xy

AA + ��xy
WL. �2.14�

Here, �xy
�0� is the bare Hall resistity �2.3� and quantum correc-

tions are related to the corresponding corrections to the Hall
�2.9� and longitudinal �2.11� conductivities as

��xy
�i�

�xy
�0� =

��xy
�i�

�xy
�0� − 2

��xx
�i�

�xx
�0� , �i� = TA, VD, AA, WL.

�2.15�
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Since the TA effects leads to the renormalization of the
tunneling conductance GT only, it cannot affect the HR �xy

�0�

�Eq. �2.3��, which does not contain GT. Indeed, it follows
from Eqs. �2.4� and �2.12� that

��xy
TA

�xy
�0� = 2

��xx
TA

�xx
�0�

and, therefore, the correction to Hall resistivity from the
“tunneling anomaly” effect vanishes,

��xy
TA = 0. �2.16�

Next, since the “virtual diffusion” correction is absent for
longitudinal conductivity �Eq. �2.11��,22 we obtain

��xy
VD�T�
�xy

�0� =
��xy

VD�T�
�xy

�0� , �2.17�

where ��xy
VD�T� is given by Eq. �2.5�. Further, since the

“Altshuler-Aronov”-type correction ��xy
AA to Hall conductiv-

ity vanishes �Eq. �2.6��, we obtain

��xy
AA�T�
�xy

�0� = − 2
��xx

AA�T�
�xx

�0� . �2.18�

Finally, it follows from Eqs. �2.7� and �2.15� that the WL
correction to the Hall resistivity vanishes identically both in
2D and 3D,

��xy
WL = 0. �2.19�

Therefore, weak localization does not affect the Hall resis-
tivity, at least in the first order in 1 /gT, in which significant
contributions due to the Coulomb interaction are obtained.
Equations �2.18� and �2.19� agree with the results for HDMs
obtained in Refs. 17 and 18.

According to Eqs. �2.16�–�2.19�, the only nonvanishing
quantum contributions to the Hall resistivity are ��xy

VD and
��xy

AA.
Summarizing our findings for the classical result �Eq.

�2.3��, Coulomb interaction �Eqs. �2.16�–�2.18�� and weak
localization �Eq. �2.19�� corrections, we predict the follow-
ing behavior of the Hall resistivity �Eq. �2.14�� of a granular
metal:

�xy�T� =
H

n*ec

1 +

cd

4�gT
ln�min�gTEc,ETh�

max�T,�� � − 2
��xx

AA�T�
�xx

�0� � .

�2.20�

�i� At high enough temperatures T�min�gTEc ,ETh�, the
Hall resistivity �xy�T�=�xy

�0� is given by the Drude-like ex-
pression �2.3� �the first term in Eq. �2.20�� and is independent
of both the intragrain and tunnel contact disorder. Measuring
�xy at such T and using Eq. �2.3�, one can extract an impor-
tant characteristic of the granular system: its effective carrier
density n*=An, which is related to the actual carrier density
n of the grain material through a geometry-dependent factor
A�1.

�ii� In a wide temperature range �Tmin�gTEc ,ETh�,
both for 2D and 3D samples, local effects of the Coulomb
interaction lead to the logarithmic in T correction to the Hall

resistivity ���xy
VD�T�, the second term in Eq. �2.20�, see Eqs.

�2.5� and �2.17��. This ln T dependence saturates at T�� and
��xy

VD�T� remains constant for T�. We emphasize that this
correction is absent in homogeneously disordered metals, but
it appears to be the major quantum correction to the Hall
resistivity of a granular metal that governs the T dependence
of �xy�T� in a wide temperature range both for 2D and 3D
samples.

�iii� An additional T dependence of �xy�T� may arise due
to the “Altshuler-Aronov” correction ��xx

AA�T� to the longitu-
dinal conductivity ���xy

AA�T�, the third term in Eq. �2.20�, see
Eqs. �2.6�, �2.13�, and �2.18�� at much lower temperatures
T	�, the most significant logarithmic contribution expected
for sufficiently thin granular films �one or a few grain mono-
layers, Eq. �2.13��.

The temperature behavior of the contributions ��xy
VD�T�

and ��xy
AA�T� is shown in Fig. 2.

We expect our result, Eq. �2.20�, to hold for realistic ar-
rays with moderate structural disorder and, most importantly,
with randomly distributed tunneling conductances, which is
inevitable in real systems. The reason is that �i� n* simply
does not depend on the distribution of GT; �ii� the logarith-
mic form of the major quantum correction ���xy

VD�T�, the sec-
ond term in Eq. �2.20�� persists in this case, although the
structure factor cd�1 does depend on the distribution of
conductances and gT should be substituted by some averaged
quantity.

Comparison of our findings with experimental data may
serve as a good check of the theory developed here. The
experimental situation related to our theory is mentioned in
the Conclusion, Sec. VIII.

FIG. 2. Temperature dependence of the Coulomb interaction
corrections ��xy

VD�T� �Eq. �2.17�� and ��xy
AA�T� �Eq. �2.18�� to the

Hall resistivity �second and third terms in Eq. �2.20�, respectively�.
The most significant contribution in a wide range of temperatures
�Tmin�gTEc ,ETh�� both for two- and three-dimensional samples
comes from the correction ��xy

VD�T� �thick solid line�, which is due
to the process of “virtual diffusion” of electrons through a single
grain. The contribution ��xy

VD�T� is of local origin and absent in
homogeneously disordered metals. It depends logarithmically on
temperature T in the range �Tmin�gTEc ,ETh�, saturating at T
�� and remaining constant for T�. The correction ��xy

AA�T� is
analogous to the “Altshuler-Aronov” correction in ordinary disor-
dered metals, it can be significant �Eq. �2.13�� for sufficiently thin
granular films and low enough temperatures �T	��a /dz�2� only,
the latter 2D case shown in the figure �dashed line�.
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III. MODEL AND HAMILTONIAN

A. System

We consider a quadratic �d=2, 2D� or cubic �d=3, 3D�
lattice of metallic grains coupled to each other by tunnel
contacts �Fig. 1�.

Aiming to concentrate on the Hall effect, we assume the
simplest case of translationally invariant lattice, i.e., equal
tunneling conductances GT of all contacts, translationally in-
variant capacitance matrix, and identical properties of all
grains �the same form and size, mean-free path, electron den-
sity, density of states, etc.�. After the main properties of the
Hall effect in such a system have been established, we argue
that they also hold for realistic arrays. In real systems in the
metallic regime, the major type of irregularities that �could�
affect electron transport even for structurally quite regular
arrays seems to be the randomness of tunneling conduc-
tances GT, while other assumptions can be well met or are
inessential.

To provide more explicit analysis we further simplify the
calculations assuming the intragrain electron dynamics diffu-
sive, i.e., that the bulk mean free path l in the grain is much
smaller than the size a of the grain, l	a. In this case details
of electron scattering off the grain boundary are irrelevant.
However, our approach is also entirely applicable to the case
of ballistic �l�a� intragrain disorder, when surface scatter-
ing becomes important. The main results, listed in Sec. II, are
valid for both diffusive and ballistic grains.

In the metallic regime �gT�1� quantum effects of Cou-
lomb interaction can be considered perturbatively with an
expansion parameter 1 /gT as long as the relative corrections
remain small.

B. Hamiltonian

We write the Hamiltonian describing the system as

Ĥ = Ĥ0 + Ĥt + Ĥc. �3.1�

In Eq. �3.1� the first term

Ĥ0 = �
i
 dri�

†�ri���
pi −
e

c
A�ri�� + U�ri����ri�

�3.2�

is the Hamiltonian of isolated grains, ��p�=p2 / �2m�−�F,
A�ri� is the vector potential describing the uniform magnetic
field H=Hez directed along the z axis, U�ri� is the random
disorder potential of the grains, i= �i1 , . . . , id��Zd is an inte-
ger vector numerating the grains. The integration with re-
spect to ri is done over the volume of the grain i. Since we
do not deal with spin-related phenomena in this paper, we
omit the spin indices of the operators ��ri�. Accounting for
spin degeneracy in the course of calculations is simple: each
electron loop comes with the factor 2. We consider white-
noise disorder and perform averaging using the Gaussian dis-
tribution with the variance

�U�ri�U�ri���U =
1

2���0
��ri − ri�� , �3.3�

where � is the density of states in the grain at the Fermi level
per one spin projection and �0 is the scattering time.

The tunneling Hamiltonian Ĥt in Eq. �3.1� is given by

Ĥt = �
�i,j�

�Xi,j + Xj,i� , �3.4�

where the operator Xi,j describes tunneling from the grain j
to the grain i, the summation is taken over the neighboring
grains connected by a tunnel contact, such that each contact
is counted only once. For studying Hall effect the geometry
of the grains and contacts is essential, therefore we write the
tunneling operators Xi,j in the coordinate representation

Xi,j = dsidsjt�si,sj��†�si���sj� , �3.5�

where the integration is carried out over two surfaces of the
contact: one of them �si� belonging to the ith grain, whereas
the other �sj� to the jth grain. Such form implies that tunnel-
ing occurs from a close vicinity of the contact of atomic size,
but not from the bulk of the grain. This is a natural assump-
tion, since we consider a good metallic limit for the grains,
i.e., the size a of the grains is much greater than the Fermi
length, pFa�1 �pF is the Fermi momentum�. Fast oscilla-
tions of the wave functions in the grains result in a fast decay
of the overlap of the wave functions in different grains. Since

Ĥt
†= Ĥt, we have Xi,j

† =Xj,i and t*�si ,sj�= t�sj ,si�.
Without further assumptions about the tunneling ampli-

tudes t�si ,sj� in Eq. �3.5�, electrons can tunnel from a given
point sj to an arbitrary point si on the other side of the con-
tact. However, it is physically clear that �i� electrons effec-
tively tunnel from the point sj to the points si in the vicinity
of sj of atomic size only, therefore t�si ,sj� should decay rap-
idly on atomic scale as a function of si−sj; �ii� the amplitude
t�si ,sj� can also fluctuate as a function of si for fixed si−sj
due to irregularities of the contact on atomic scale.

To effectively model this behavior of the tunneling ampli-
tudes we consider t�si ,sj� as Gaussian random variables and
average over them with the variance

�t�si,sj�t�sj,si��t = t0
2��si − sj� , �3.6�

where ��si−sj� is an atomic scale � function on the contact
surface and t0

2 has a meaning of tunneling probability per unit
area of the contact. As we will see, the assumption pFa�1
will enable us to neglect the contributions containing the
regular parts �t�si ,sj��t of the tunneling amplitudes.

The third term in Eq. �3.1� stands for the Coulomb inter-
action between the electrons. In principle, one has to start
with the bare form

Ĥc =
1

2�
i,j
 dridrj�

†�ri��†�rj�
e2

�ri − rj�
��rj���ri� .

�3.7�

Proceeding with the calculations we will have to take the
screening of Coulomb potential by electron motion into ac-
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count. One should distinguish between the intragrain and
intergrain electron motion. In the static limit �classical elec-
trostatics� for the intragrain motion the Coulomb interaction
is reduced to the effective charging energy Eij interaction
between the total excess charges of the grains. Accounting
for tunneling yields the screened form of the charging energy
interaction,13 which is sufficient for studying the intergrain
transport. We will see, however, that coordinate-dependent
interaction modes inside each grain arising from the intra-
grain motion will be necessary to obtain a correct frequency
dependence of the classical Hall resistance RH of a single
grain.

C. Kubo formula

The conductivity in a homogeneous external electric field
is calculated using the Kubo formula in Matsubara
technique23

�ab��� = 2e2a2−d 1

���
��ab��� − �ab�0�� , �3.8�

�ab��� = �
j
�ab��,i − j� , �3.9�

where

�ab��,i − j� = 
0

1/T

d�ei���T�Ii,a���Ij,b�0�� �3.10�

is the current-current correlation function,

Ii,a��� = Xi+a,i��� − Xi,i+a��� . �3.11�

Here ��2�TZ is an external bosonic Matsubara frequency
�Z is the set of integers�, a and b are the lattice unit vectors.
The factor 2 in Eq. �3.8� stands for the spin degeneracy com-
ing from one electron loop. The vector a denotes the direc-
tion of the current component and b points along the external
electric field that causes the current. For example, if b=ey,
then a=ex for Hall conductivity �xy =�exey

and a=ey for lon-

gitudinal conductivity �yy =�eyey
. Further, A���=eĤ�Ae−Ĥ� is

the Heisenberg operator in Matsubara technique. The opera-
tor of the tunneling current through the contact connecting
the grains i and i+a actually equals −ieIi,a���, we extracted
�−ie�2 from �ab�� , i− j� for further convenience. The aver-
age �…� in Eq. �3.10� implies both the quantum mechanical

thermodynamic averaging with respect to Ĥ and averaging
over the intragrain and contact disorder according to Eqs.
�3.3� and �3.6�. The contact between the neighboring grains
i+a and i will be further identified by the pair �i+a , i�.

The correlation function �ab�� , i− j� represents the cur-
rent running through the contact �i+a , i� in response to the
voltage applied to the contact �j+b , j� only. The sum over j
in Eq. �3.9� means that the contributions from all contacts
have to be considered.

IV. TECHNIQUE

A. Basic rules

The current-current correlation function �ab�� , i− j� �Eq.
�3.10�� is calculated using the diagrammatic technique. Let
us first discuss its details neglecting the Coulomb interaction
term Ĥc �Eq. �3.7�� in the full Hamiltonian Ĥ �Eq. �3.1��
completely. Technically, for a given pair �i+a , i� and �j
+b , j� of contacts one expands Eq. �3.10� both in the disorder

potential U�ri� �Eq. �3.2�� and tunnelling Hamiltonian Ĥt
�Eqs. �3.4� and �3.5��. Each diagrammatic contribution to
�ab�� , i− j� is a loop of two Green’s functions connecting
the contacts �i+a , i� and �j+b , j�. Then one averages this
loop over the intragrain and contact disorder according to
Eqs. �3.3� and �3.6�.

Of course, many different possibilities of drawing such a
loop can be considered �see Fig. 3�. However due to the
general properties of the Green’s functions in the coordinate
representation and the assumption employed in Eq. �3.5� that
tunneling occurs from the vicinity of the contacts, but not
from the bulk of the grain, a lot of them can be ruled out
even before averaging over U�r�.

Consider a Matsubara Green’s function G�� ,r ,r�� of an
arbitrary grain for a given realization of the disorder poten-
tial U�r�. The Green’s function G�� ,r ,r��
eipF�r−r��sgn � os-
cillates at the Fermi wavelength �F=2�pF

−1 as a function of
the difference r−r�. Since we assume the grain size a and
the size of the area of the contact much greater than �F, this
fact excludes the following possibilities.

FIG. 3. Different types of diagrams for the current-current cor-
relation function �ab�� , i− j� �Eq. �3.10�� neglecting Coulomb in-
teraction �Eq. �3.7��. Diagrams of types �a� and �b� that contain
oscillating at Fermi wavelength �F= pF

−1 functions in coordinate
representation vanish after the integration of the contacts surfaces
give 0. In diagram �a� two different contacts are connected by a
single Green’s function G�� ,s1 ,s2�; in diagram �b� two different
contacts are connected by two Green’s functions G�� ,s1 ,s2� and
G�� ,s2 ,s1� having the same �sign of� energies. �c� The only type of
“allowed” diagrams that do not contain oscillating functions and
give nonvanishing contributions: the two contacts �i+a , i� and �j
+b , j� with external tunneling vertices �wavy lines� are “capped” by
the Green’s functions G�� ,s ,s� from one of their sides and con-
nected by two Green’s functions G��+� ,si+a ,sj� and G�� ,sj ,si+a�,
the “paths” of which through other contacts coincide. For energies,
such that ��+����0, the diffuson D �Eq. �4.1�� in each grain along
this path arises. �d� Diagram for the longitudinal conductivity �xx

�0�

=a2−dGT �Eq. �1.4�� in the leading order in gT /g0	1.

HALL TRANSPORT IN GRANULAR METALS PHYSICAL REVIEW B 77, 045116 �2008�

045116-7



�i� If two different contacts s1 and s2 are connected by a
single Green’s function G�� ,s1 ,s2� in a given grain �Fig.
3�a��, then integration over the contacts surfaces
�ds1ds2G�� ,s1 ,s2� gives zero due to the rapid oscillations of
the integrand.

�ii� If two different contacts s1 and s2 are connected by
two Green’s functions G�� ,s1 ,s2� and G��� ,s2 ,s1� �or
G��� ,s1 ,s2�� in a given grain having the same signs of ener-
gies, ����0, �Fig. 3�b�� then, again, their product is an os-
cillating function and �ds1ds2G�� ,s1 ,s2�G��� ,s2 ,s1� also
gives zero.

So, the only objects of the diagrammatic technique that
“survive” inside the grains are those that do not contain os-
cillations at the Fermi wavelength �F in their coordinate de-
pendence �Fig. 3�c��. These are �1� the single Green’s func-
tion G�� ,s ,s� with coinciding coordinates s on the contact
surface; �2� the product of two Green’s functions with pair-
wise coinciding coordinates and opposite signs of energies:
G�� ,s1 ,s2�G��� ,s2 ,s1� or G�� ,s1 ,s2�G��� ,s1 ,s2� with ���
�0. After disorder averaging such products of two Green’s
function give well-known electron propagators for a single
isolated grain: the “diffuson”24

D��,r,r�� �
1

2��
�G�� + �,r,r��G��,r�,r��U, �� + ��� � 0

�4.1�

and the “Cooperon”

C��,r,r�� �
1

2��
�G�� + �,r,r��G��,r,r���U, �� + ��� � 0.

�4.2�

Cooperons will be important for weak localization effects,
which we consider in Sec. VII, while in this section we con-
sider the diffuson �4.1� in detail. In Eqs. �4.1� and �4.2�, the
points r and r� belong to the same given grain.

We are left with the following general type of diagram �in
the absence of Coulomb interaction and weak localization
effects� for �ab�� , i− j� shown in Fig. 3�c�: �1� each contact
�i+a , i� and �j+b , j� with external tunneling vertices must be
“capped” by the Green’s function G�� ,s ,s� from one of its
sides �one cannot “construct” a diffuson from G�� ,s ,s�,
since only one energy � is available, see Fig. 3�b��; �2� two
Green’s functions G��+� ,si+a ,sj� and G�� ,sj ,si+a� connect
the contacts �i+a , i� and �j+b , j� from the opposite sides and
their “paths” through different contacts must coincide. There-
fore, in each grain along this path the diffuson D �Eq. �4.1��
of this particular grain arises. The arising product of two
Green’s functions with pairwise coinciding coordinates de-
fines the diffuson of the whole granular system

D��,ri,rj�� �
1

2��
�G�� + �,ri,rj��G��,rj�,ri��U,t,

�� + ��� � 0. �4.3�

Contrary to Eq. �4.1�, the points ri and rj� may belong to
arbitrary distant grains i and j now. Each diagrammatic con-
tribution to D �Eq. �4.3�� is factorized into the product of

intragrain diffusons D �Eq. �4.1�� connecting different con-
tacts inside the grain and tunneling probabilities expressed
via the tunneling escape rate �.

To obtain the conductivity �ab��� one should sum
�ab�� , i− j� over all j according to Eq. �3.9�. An important
observation is that due to this summation the intragrain dif-
fusons always enter the expression for �ab��� as a difference
D�� ,s1 ,s2�−D�� ,s3 ,s4� of the diffusons connecting differ-
ent contacts. Therefore the zero mode 1 / ����V� �see Sec.
IV B below� drops out and the contribution to �ab��� comes
from nonzero modes with “excitation energies” of the order
of the Thouless energy ETh.

25 Each pair “grain+contact”
brings a factor � /ETh
gT /g0, given by the ratio of the tun-
neling conductance gT to the conductance of the grain g0.

What does the above procedure amount to? It appears that
this procedure reproduces exactly the solution of the classi-
cal electrodynamics problem for the conductivity of a granu-
lar medium, provided each tunnel contact is viewed as a
surface resistor with conductance GT.26 In principle, this ap-
proach allows one to study both LC and HC of the granular
system for arbitrary ratio gT /g0. For example, the classical
formula

�xx
�0� = a2−d GTG0

GT + G0

for LC, corresponding to the contact GT
−1 and grain G0

−1 re-
sistances connected in series, can be obtained this way. Its
expansion

�xx
�0� = a2−d�GT − GT

2/G0 + GT
3/G0

2 − . . . � �4.4�

in gT /g0 corresponds to the expansion of the diffuson D in
the intragrain diffusons D. Each subsequent term in Eq. �4.4�
corresponds to including contacts �j+ex , j� more and more
remote from �i+ex , i� in Eq. �3.9�.

However, for the system with well-pronounced granular-
ity �gT	g0, Eqs. �1.2� and �1.3�� one does not need to sum
the contributions from all distant contacts �j+b , j� in Eq.
�3.9�.

It is sufficient to consider the lowest nonvanishing order
in gT /g0	1, given by the closest contacts. In fact, for LC
�xx

�0� �a=b=ex� considering nonzero-mode intragrain diffu-
sons is not necessary at all, since the first term GT �Eq. �1.4��
of the expansion �4.4� is obtained from a single contact �j
= i� without expanding Eq. �3.10� in Ĥt �see Fig. 3�d��. In-
cluding the closest contacts �j= i , i±ex in Eq. �3.9�� via the
intragrain diffusons D will give the next term −GT

2 /G0 in Eq.
�4.4�, which is a small correction to GT.

On the contrary, for the Hall conductivity �xy �a=ex ,b
=ey� the expansion in gT /g0 starts from the term GT

2RH �Eq.
�1.5�� analogous to −GT

2 /G0 in Eq. �4.4�. To obtain this term
one must connect the contacts �j+ey , j� in the y direction
closest to the contact �i+ex , i� in the x direction via the inta-
grain diffusons D �i.e., take into account the terms with j
= i−ey , i , i+ex , i+ex−ey in Eq. �3.9��. Thus, considering non-
zero diffusion modes for Hall transport is inevitable.
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The above considerations also explain why expanding in

the tunneling Hamitonian Ĥt is a “legal” procedure in the
metallic regime, even though the dimensionless tunneling
coupling constant gT�1 is large. The answer is that the ac-
tual expansion parameter is the ratio gT /g0.

Before we proceed with calculating the Hall conductivity
in Sec. V, we consider important building blocks of our dia-
grammatic technique: the intragrain diffuson in the presence
of the magnetic field and the screened Coulomb interaction.

B. Intragrain diffuson

1. Diffusion equation

The diffuson D�� ,r ,r�� of a single isolated grain is de-
fined by Eq. �4.1�. The averaging over the disorder potential
U�r� in Eq. �4.1� is done using the conventional diagram-
matic technique.23 In the “noncrossing” approximation valid
for weak disorder �pFl�1, where l=vF�0 is the electron
mean-free path and vF is the Fermi velocity� the diffuson is
given by the sum of ladder-type diagrams. This standard se-
ries can be expressed in terms of the solution of the integral
equation �Fig. 4�

D��,r,r�� = D0��,r,r�� +
1

�0
 dxD0��,r,x�D��,x,r�� ,

�4.5�

where

D0��,r,r�� =
1

2��
G�� + �,r,r��G��,r�,r� �4.6�

is the “ladder step” given by the product of two disorder-
averaged Green’s functions of the grain

G��,r,r�� = �G��,r,r���U. �4.7�

In the diffusive limit �l	a, ��0	1� the integral equation
�4.5� can be reduced to the differential diffusion equation
�we assume ��0 from now on�

�� − D0�r
2�D��,r,r�� = ��r − r�� , �4.8�

where D0=vFl /3 is the classical diffusion coefficient in the
grain �D0 is not affected by the magnetic field, such that
�H�0	1�.

For a finite system �a grain�, Eq. �4.8� must be supplied by
a proper boundary condition at the grain surface. We derive
this boundary condition in the presence of the magnetic field
in the next section.

2. Boundary condition

To obtain the boundary condition for the diffuson
D�� ,r ,r�� �Eq. �4.1��, we recall its physical meaning: In the
real-time representation, the quantity

D�t,r,r�� = 
−�

+� d�̃

2�
e−i�̃t��D��n,r,r����i�n→�̃+i0,

�n�0

gives the probability density to find an electron at point r at
time t provided it was at point r� at time t�=0. Therefore,
according to the formal definition �4.1� of the diffuson, we
can write down the probability current corresponding to the
diffusion process as

j��,r,r�� =
1

2��
�ĵr�G�� + �,r,r��G��,r�,r���U,

�� + ��� � 0, �4.9�

where

ĵr�G�� + �,r,r��G��,r�,r�� =
1

2m
�G��,r�,r��− i�r�G�� + �,r,r�� + G�� + �,r,r���i�r�G��,r�,r��

−
e

mc
A�r�G�� + �,r,r��G��,r�,r� �4.10�

is the current operator acting on the product of two Green’s
functions and A�r� is a vector potential corresponding to
the magnetic field H=Hez. Since an electron cannot escape
from an isolated grain, the normal component of the
current j= j�� ,r ,r�� �Eq. �4.9�� must vanish at the grain
boundary,

��n · j��r�S = 0. �4.11�

Here, the coordinate r belongs to the grain boundary S and
the unit vector n normal to the grain boundary points outside
the grain.

The explicit form of the boundary condition for the diffu-
sion propagator D�� ,r ,r�� should be obtained from Eqs.
�4.9�–�4.11�. Further simplifications depend on the model
used. In the case of white-noise disorder, using the integral
equation �4.5� for the diffuson, we obtain

FIG. 4. Diagrammatic representation of the integral equation
�4.5� for the intragrain diffuson D�� ,r ,r�� �gray block�, defined by
Eq. �4.1�. Fermionic lines stand for the disorder-averaged Green’s
function G�� ,r ,r��, dashed line denotes the correlation function
�3.3� of the random potential.
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j��,r,r�� = ĵr�D0��,r,r���

+
1

�0
 dxĵr�D0��,r,x��D��,x,r�� ,

�4.12�

where ĵr acts on the Green’s functions G �Eq. �4.7�� in
D0�� ,r ,r�� �Eq. �4.6�� according to Eq. �4.10�.

We now exploit the diffusive limit. Since D0�� ,r ,r�� var-
ies on the spatial scale l	a, we can �i� neglect the first term
in the right-hand side �RHS� of Eq. �4.12�; �ii� expand
D�� ,x ,r��, writing it as

D��,x,r�� � D��,r,r�� + �x − r���r�D��,r,r�� ,

to obtain

j���,r,r�� =
1

�0
�j�r��0�r�D��,r,r�� �4.13�

for the components of j�� ,r ,r��. In Eq. �4.13�,

�j�r��0 = dx ĵr��D0��,r,x���x − r�� �4.14�

is the current-coordinate correlation function �Eqs. �4.6� and
�4.7�� and � ,�=x ,y ,z. �iii� In the diffusive limit, details of
the boundary scattering become unimportant as soon as we
move away from the boundary into the bulk of the grain over
the distance of the order of the mean-free path l. Since
D�� ,r ,r�� in Eq. �4.13� varies on the scales a� l, the con-
dition �4.11� may be calculated not exactly at the boundary,
but at some point a few l away from it. This allows us to use
for Green’s functions G in Eq. �4.14� their expressions for
the bulk.

Inserting Eqs. �4.13� and �4.14� into Eq. �4.11�, we obtain
the following general from of the boundary condition for the
diffuson:

�n��j�r��0�r�D��,r,r���r�S = 0. �4.15�

The derivation of the boundary condition for the diffuson
D�� ,r ,r�� has thus been reduced to the calculation of the
current-coordinate correlation function �j�r��0 �Eq. �4.14��.
In the presence of the magnetic field, �j�r��0 can be calcu-
lated with the help of diagrammatic technique either by di-
rectly expanding Green’s functions in vector potential A�r�
or using an explicitly gauge-invariant approach developed by
Khodas and Finkel’stein in Ref. 27. We illustrate the former
approach here, see Fig. 5. In the linear order in H we obtain

�j�r��0 = �
��� +
e�0

mc
��� H � , �4.16�

where ��� is the totally antisymmetric tensor, �xyz=1, and
�=−�2� /3��l2 is an irrelevant for the boundary condition
�4.11� prefactor. Inserting Eq. �4.16� into Eq. �4.15�, we ob-
tain the boundary condition for the diffuson D=D�� ,r ,r�� in
the presence of the magnetic field,

n�
��� +
e�0

mc
��� H ���r�D�r�S = 0,

which can be also expressed in the form

��n · �rD��r�S = ��H�0�t · �rD��r�S. �4.17�

Here,

t = �n ! H�/H �4.18�

is the vector tangent to the grain boundary and pointing in
the direction opposite to the edge drift. The RHS of Eq.
�4.17� describes the edge drift caused by the magnetic part
e
c �v!H� of the Lorentz force. We remind the reader that
�H=eH / �mc� is the cyclotron frequency and �0 is the scat-
tering time inside the grain.

To the best of our knowledge, the boundary condition
�4.17� for the diffuson in the presence of the magnetic field,
containing the edge-drift term, has not been derived before.
We are also unaware, if the very method of deriving the
boundary condition based on writing the probability current
as in Eq. �4.9� was developed earlier. We stress that this
method is very general and can also be used for ballistic type
of electron dynamics, strong magnetic fields, and arbitrary
model of disorder.

In Sec. V we will see that the boundary condition �4.17�
plays a central role in the theory of the Hall effect in granular
metals. Only due to Eq. �4.17� the diffuson D�� ,r ,r��
“knows” about the magnetic field. All information about the
magnetic field in the system is now contained in this bound-
ary condition and the nonzero Hall conductivity we will ob-
tain results from the nonzero RHS of Eq. �4.17�. The main
consequence of Eq. �4.17�, crucial for the Hall effect, is the
directional asymmetry,

FIG. 5. Diagrams for the current-coordinate correlation function
�j�r��0 �Eq. �4.14�� up to the linear in the magnetic field H order.
Fermionic lines denote the Green’s function �G�� ,p��−1= i�−��p�
+ i

2�0
sgn � of a bulk metal with H=0. �a� Magnetic-field-

independent part of �j�r��0 giving the left-hand side �LHS� of the
boundary condition �4.17�. �b� Linear in magnetic field part of
�j�r��0 obtained by inserting the “magnetic vertex” − e

mcAp̂ in all
possible ways into the diagram �a� and giving the RHS of Eq.
�4.17�.
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D��,r,r�� � D��,r�,r� for H � 0,

of the diffuson in the nonzero magnetic field. For H=0, Eq.
�4.17� reduces to the well-known Neumann boundary condi-
tion:

��n · �rD��r�S = 0.

3. Eigenmode expansion

As a result of Secs. IV B 1 and IV B 2, in the diffusive
limit, the calculation of the diffuson D�� ,r ,r�� �Eq. �4.1��
has been reduced to the solution of the differential equation
�4.8� together with the boundary condition �4.17�. Although
the exact analytical solution of this problem can be obtained
only for certain simple grain geometries, for a general analy-
sis it is instructive to use the following eigenmode expan-
sion. Namely, the solution to Eqs. �4.8� and �4.17� can be
presented in the form

D��,r,r�� =
1

�V
+ �

n�0

�n�r��n
*�r��

� +  n
, �4.19�

where �n are the eigenfunctions of the problem

− �r
2�n = qn

2�n, ��n · �r�n��S = �H�0��t · �r�n��S,

 n=D0qn
2 is the “diffusion spectrum,” and V is the grain vol-

ume. The functions �n satisfy the orthonormality condition

 dr�n
*�r��n��r� = �nn�. �4.20�

There always exists a uniform solution �0�r�=1 /	V with the
zero eigenvalue  0=0 giving the zero mode 1 / ��V� in Eq.
�4.19�. The lowest excited mode  1�ETh�D0 /a2 defines
the Thouless energy scale ETh. The zero mode 1 / ��V� de-
scribes the fact that at time scales much greater than the
traversal time 1 /ETh the probability density to find an elec-
tron is distributed uniformly over the grain volume. Informa-
tion about nontrivial intragrain dynamics is contained in non-
zero modes,

D̄��,r,r�� = �
n�0

�n�r��n
*�r��

� +  n
. �4.21�

We will see that for Hall effect, for which the intragrain

dynamics is essential, only the nonzero mode part D̄�� ,r ,r��
of the diffuson D�� ,r ,r�� enters the expressions for HC and
HR, whereas the zero mode 1 / ��V� simply drops out.

C. Screened Coulomb interaction

Within the random phase approximation the screened
Coulomb interaction is given by a diagrammatic series that
can be obtained as a solution of the integral equation �Fig. 6�

V�",ri,rj�� = Vc�ri − rj�� − �
k,l
 dxkdxl�

! Vc�ri − xk��P�",xk,xl��V�",xl�,rj�� ,

�4.22�

where "�2�TZ is a bosonic Matsubara frequency and
Vc�r−r��=e2 / �r−r�� is the bare Coulomb interaction, Eq.
�3.7�. Just like for ordinary disordered metals the polariza-
tion operator of the granular system is defined as an electron-
hole loop

P�",ri,rj�� = −
2

�
T�

�

�G�� + ",ri,rj��G��,rj�,ri��U,t

�4.23�

�2 comes from the spin degeneracy� and can be expressed in
terms of the diffuson �4.3� of the system �we assume "�0�,

P�",ri,rj�� = 2��ij��ri − rj�� − "D�",ri,rj��� . �4.24�

Since the Coulomb potential Vc�r−r�� satisfies the Poisson
equation

− �r
2Vc�r − r�� = 4�e2��r − r�� ,

Eq. �4.22� can be rewritten in a differential form

− rD
2 �r

2V�",ri,rj�� =
1

�
�ij��ri − rj��

− �
k
 dxkP�",ri,xk�V�",xk,rj�� ,

�4.25�

where rD is the Debye screening radius, 1 /rD
2 =4�e2�.

Depending on the approximations used for D, one obtains
different forms of the screened potential V�" ,ri ,rj��.

1. Coulomb interaction V„� , ri , rj�… for isolated grains

First we obtain the screened potential V�" ,ri ,rj�� neglect-
ing tunneling between the grains. In this case the polarization
operator �4.24� takes the form

P�",ri,rj�� = �ijP�",ri,rj�� ,

where

P�",r,r�� = 2���r − r�� − "D�",r,r���

is the polarization operator of a single isolated grain

P�",r,r�� = �
n�0

Pn�"��n�r��n
*�r��, Pn�"� = 2

 n

" +  n

�4.26�

�see Eq. �4.19��. Considering the limit when �i� the spatial
scales qn

−1�a�rD are much greater than the Debye screen-

FIG. 6. Diagrammatic representation of the integral equation
�4.22� for the screened Coulomb interaction V�" ,ri ,rj�� �wavy line,
see Eqs. �4.31�, �4.32�, and �4.28� below�. Zigzag line represents the
bare Coulomb potential Vc�r−r��=e2 / �r−r�� and electron loop the
polarization operator P�" ,ri ,rj�� �Eq. �4.23��.
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ing radius rD, �ii� the frequencies "	�xx
gr are much smaller

than the grain conductivity �xx
gr ��xx

gr
D0 /rD
2 �, we can neglect

the LHS of Eq. �4.25� altogether. Following the lines of Ref.
28, we obtain

V�",ri,rj�� = Eij + �ijv�",ri,rj�� . �4.27�

Here Eij=e2�C−1�ij is the charging energy matrix of the
granular array �Cij is the capacitance matrix, see, e.g., Ref.
29�. The characteristic scale of Eij is Ec=e2 / ��a�, where � is
the dielectric constant of the array. The charging energy Eij
appears from the zero mode 1 / �"V� of the diffuson
D�" ,r ,r��. On the contrary, the coordinate-dependent part
of the interaction inside the grain is due to the nonzero dif-
fusion modes of D�" ,r ,r�� and equals

v�",r,r�� =
1

�
�
n�0

vn�"��n�r��n
*�r��, vn�"� =

1

2

" +  n

 n
.

�4.28�

For qnrD	1 and "	�xx
gr this part is completely screened

and equal to the inverse intragrain polarization operator
�4.26�, vn�"�=1 / �Pn�"��.

2. Coulomb interaction V„� , ri , rj�… taking tunneling into
account

Now we take tunneling into account. This modifies the
expression for the diffuson D�" ,ri ,rj�� in Eq. �4.23�, which
now becomes nondiagonal in the grain indices i , j. Let us
rewrite the diffuson D in the following form:

D�",ri,rj�� = �ijD�",ri,rj�� + �D�",ri,rj�� .

The part �D�" ,ri ,rj�� is responsible for tunneling and van-
ishes, if tunneling is absent. If we leave only the zero intra-
grain modes �0D limit� in �D�" ,ri ,rj��, the diffuson equals

D�",ri,rj�� = �ijD̄�",ri,rj�� +
1

V
D0�",i,j� , �4.29�

where D̄�" ,r ,r�� �Eq. �4.21�� is the nonzero-mode part of
the intragrain diffuson and

D0�",i,j� = �
q

eiaq�i−j�D0�",q� ,

D0�",q� = 1/�" + �q� �4.30�

is the diffuson for the whole granular system with 0D limit in
each grain. The “kinetic term” �q in Eq. �4.30� equals

�q = 2��
�

�1 − cos q�a� ,

where �=2��t0
2S0 /V is the tunneling escape rate �S0 is the

area of the contact�, �=x ,y for d=2 and �=x ,y ,z for d=3,
q� �−� /a ,� /a�d is the quasimomentum of the granular lat-
tice, and the sum �q . . . =� adddq

�2��d . . . denotes the integration

over the first Brillouin zone �−� /a ,� /a�d.
According to Eq. �4.29� the polarization operator �4.24�

takes the form

P�",ri,rj�� = �ijP�",ri,rj�� +
1

V
P0�",i,j� ,

where

P0�",i,j� = 2��ij − "D0�",i,j��, P0�",q� = 2
�q

" + �q

is the zero-mode polarization operator of a granular
system.13

Accounting for tunneling according to Eq. �4.29� results
in the screening of the charging energy Eij in Eq. �4.27� only,
whereas v�" ,ri ,rj�� remains unchanged. As a result, we ob-
tain for the screened Coulomb interaction of the granular
system

V�",ri,rj�� = V�",i,j� + �ijv�",ri,rj�� , �4.31�

where

V�",i,j� = �
q

eiaq�i−j�V�",q�

is the screened form of the zero-mode interaction,13

V�",q� =
Ec�q�

1 + �Ec�q�/��P0�",q�
,

Ec�q� = �
i

e−iaq�i−j�Ei−j, �4.32�

and v�" ,r ,r�� is given by Eq. �4.28�.
The form �4.31� of the screened interaction will be suffi-

cient for us. We will see that the nonzero interaction modes
v�" ,r ,r�� inside the grain will be necessary to obtain a cor-
rect classical expression for the Hall resistance RH of the
grain and the screened zero-mode interaction V�" , i , j� will
be sufficient for calculating quantum corrections to the clas-
sical result. Significant quantum corrections to HC and HR
arise from the frequency range "	gTEc �gTEc is the inverse
RC time of the pair “contact+grain”�, when V�" , i , j� is
completely screened by the intergrain motion

V�",q� =
�

P0�",q�
=
�

2

" + �q

�q
, "	 gTEc.

V. CLASSICAL HALL CONDUCTIVITY

After the preparatory work of the previous section, we can
now proceed with our main goal: calculating the Hall con-
ductivity. In this section, we consider the simplest diagram-
matic contributions to the Hall conductivity. Even in the low-
est order in the ratio gT /g0	1 between the tunnel contact
and grain conductances, these involve the intragrain diffu-
son. The need to consider the nonzero modes of the intra-
grain diffuson and the importance of the boundary condition
in the presence of the magnetic field will clearly be seen
from our calculations. We will then prove that the obtained
result is, in fact, classical and reproduces the solution of the
problem based on the classical electrodynamics.
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A. Derivation

We start by neglecting the Coulomb interaction term Ĥc

�Eq. �3.7�� in the full Hamiltonian Ĥ �Eq. �3.1�� completely.
As explained in Sec. IV, in order to compute Hall conductiv-
ity �xy �a=ex ,b=ey� in the lowest nonvanishing order in
gT /g0	1 one has to consider the contacts �j+ey , j� in the y
direction closest to the contact �i+ex , i� in the x direction.
Calculating the current through the contact �i+ex , i� �denoted
further s0� one has to connect the contacts s1 ,s2 ,s3 ,s4 to s0,
corresponding to j= i−ey , i , i+ex , i+ex−ey in Eqs. �3.9� and

�3.10�, respectively, by the diffusons D�� ,s0 ,sa�, a
=1,2 ,3 ,4, of a single grain, as shown in Fig. 7 �also see Fig.
8�.

Let us consider the contribution �↗
�0,1���� to the correla-

tion function �xy�� , i− �i−ey�� �Eq. �3.10�� from the contact
s1. From now on we assume ��0, the arrow subscript ↗
denotes the direction of the diffuson according to Fig. 7, the
superscript “0” stands for the “bare value” without quantum
effects of Coulomb interaction, the superscript “1” is intro-
duced, since there will be other diagrammatic contributions
“2” to HC, see Fig. 9 and Eqs. �5.8� and �5.9� below. Ac-
cording to the diagram in Fig. 7, we obtain

�↗
�0,1���� = − 2��t0

4T �
−����0

 ds0ds1Di��,s0,s1�

! �Gi+ex
�� + �,s0,s0� − Gi+ex

��,s0,s0��

! �Gi−ey
�� + �,s1,s1� − Gi−ey

��,s1,s1�� .

Each end of the diffuson Di of the grain i is “capped” by the
Green’s functions Gi+ex

and Gi−ey
of the adjacent grains i

+ex and i−ey. We do not write the grain subscripts further.
The difference G��+��−G��� for each contact arises due to
two possibilities of choosing the external tunneling vertex in
Ii,a: Xi+a,i or −Xi,i+a, see Eq. �3.11� and Fig. 8. For the Green’s
functions at coinciding points one can use their bulk expres-
sion �with H=0� G−1�� ,p�= i�−��p�+ i

2�0
sgn �,

G�� + �,s0,s0� − G��,s0,s0� = � d��G�� + �,p� − G��,p��

= �− 2�i� , �� + ��� � 0,

0, �� + ��� � 0.
�

Therefore, we obtain

�↗
�0,1���� = �

gT
2

�

1

S0
2  ds0ds1D��,s0,s1� , �5.1�

where gT=2���t0�2S0 is the conductance of a tunnel contact,
S0 is the area of the contact, and � arises as 2�T�−����01
=�.

Carrying out the same procedure for the remaining con-
tacts s2 ,s3 ,s4 and paying special attention to the signs of the
contributions, for the total contribution

�xy
�0,1���� = �↗

�0,1���� + �↘
�0,1���� + �↙

�0,1���� + �↖
�0,1����

�5.2�

to �xy��� �Eq. �3.9�� from the diagrams in Fig. 7, we obtain

�xy
�0,1���� = �

gT
2

�
�D↗��� − D↘��� + D↙��� − D↖���� .

�5.3�

Here

D���� =
1

S0
2  ds0dsaD��,s0,sa� �5.4�

with a=1,2 ,3 ,4 for �= ↗ , ↘ , ↙ ,↖, respectively �Fig. 7�.

FIG. 7. Diagrams giving the contribution �xy
�0,1���� �Eq. �5.7�� to

the current-current correlation function �xy
�0���� �Eq. �5.10�� for the

bare �in the absence of quantum effects� Hall conductivity �xy
�0����

�Eqs. �1.5� and �5.13��. The contacts sa, a=1,2 ,3 ,4, must be con-
nected to the contact s0 by the intragrain diffusons, as shown in
diagrams �a�, �b�, �c�, and �d�. The diagrams are offset for clarity,
the contact s0 in each diagrams denotes the same contact. For each
diagram four possibilities of attaching external tunneling vertices
�wavy lines� must be considered, as shown in Fig. 8, only one
choice is shown here.

FIG. 8. For each diagram in Fig. 7 four possibilities �two for
each contact according to Eq. �3.11�� of attaching external tunneling
vertices �wavy lines� must be considered.
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Using the expansion �4.19� for the diffuson, we see that
due to the sign structure of Eq. �5.3� the zero mode 1 / ��V�
drops out of it. Therefore, retaining only the zero mode in
Eq. �4.19� would give just 0 in Eq. �5.3�, and we are forced
to take all nonzero modes into account.

According to the structure of Eq. �5.3� we introduce the
following auxiliary quantity:

fn = fn,↗ − fn,↘ + fn,↙ − fn,↖ �5.5�

where

fn,� =
1

S0
2  ds0dsa�n�s0��n

*�sa� �5.6�

with a=1,2 ,3 ,4 for �= ↗ , ↘ , ↙ ,↖, respectively �Fig. 7�.
The factor fn takes care about the geometry and gives a
convenient compact form of the contributions. It will be es-
pecially helpful for studying interaction corrections to HC.
We can rewrite Eq. �5.3� with the help of Eqs. �5.5� and �5.6�
as

�xy
�0,1���� = �

gT
2

�
�
n�0

fn

� +  n
. �5.7�

As we show further in Sec. V C, the expression for the
Hall conductivity, obtained from Eq. �5.7� according to Eq.
�3.8�, at zero frequency �=0 reproduces exactly the result
�1.5� for HC of a granular medium obtained from the solu-
tion of the classical electrodynamics problem. Therefore, it
would be natural to expect such correspondence with classics
for all �.

However, Eq. �5.7� would not lead to the classical formula
�1.5� at finite frequency ��0. Indeed, according to the clas-
sical electrodynamics, the resistance of a metallic sample
itself is frequency independent up to very high frequencies
���xx

gr of the order of the grain conductivity �xx
gr ��xx

gr


g0Ec is the inverse RC time of the grain�.30 We see, how-
ever, from Eq. �5.7� that �xy

�0,1���� has a dispersion at Thou-
less energy �when ��ETh�, characteristic of diffusion,
which contradicts classical picture.

What is yet missing in our approach? Apparently, one
must consider the Coulomb interaction inside the grain. In-
deed, the diffuson D�� ,r ,r��, appearing in Eqs. �5.3� and

�5.7�, describes the propagation of electron density, but it
does not take into account that electrons are charged and can
interact. The correct way to include the classical effect of
Coulomb interaction is to insert the interaction line into the
diffuson as shown in Fig. 9�b�. In its turn, this interaction is
screened by electron motion, and this can be accounted for
by inserting polarization operators into the interaction lines,
as shown in Fig. 9�c�. The summation of the resulting series
in Fig. 9 yields the screened form of the Coulomb interaction
in a grain V�� ,r ,r��=V�� , i , i�+v�� ,r ,r�� �Eq. �4.31��, and
we obtain an additional to �↗

�0,1���� �Eq. �5.1�� contribution

�↗
�0,2���� = 2gT

2 1

S0
2  ds0ds1 drdr�

!�D��,s0,r�V��,r,r���D��,r�,s1� .

Here the integration with respect to r and r� is done over the
grain volume, the spin degeneracy factor 2 comes from an
additional electron loop. Due to the orthogonality of the
eigenfunctions �n �Eq. �4.20�� the zero modes of D and V
drop out of the needed combination

�xy
�0,2���� = �↗

�0,2���� + �↘
�0,2���� + �↙

�0,2���� + �↖
�0,2���� ,

�5.8�

and we obtain an additional to �xy
�0,1���� �Eq. �5.7�� contribu-

tion �Fig. 9�d��,

�xy
�0,2���� = 2

gT
2

�
�
n�0

fn
�

� +  n
vn���

�

� +  n
. �5.9�

Summing the contributions �5.7� and �5.9� we obtain

�xy
�0���� � �xy

�0,1���� + �xy
�0,2���� =

gT
2

�
�
n�0

�fnrn,

�5.10�

where

FIG. 9. Complete set of diagrams for the bare �without quantum effects� Hall conductivity �xy
�0���� �Eqs. �5.13�� of the granular system.

�a� One starts by connecting the relevant contacts by the intragrain diffusons �see Fig. 7�. �b� To obtain a correct � dependence one should
take the Coulomb interaction into account by inserting the interaction line into the diffuson. �c� Coulomb interaction, in its turn, is screened
by the intragrain motion and one should consider insertions of the polarization bubbles into the interaction line. �d� The summation of the
resulting series yields an additional to �xy

�0,1���� ��a�, Eq. �5.7�� contribution �xy
�0,2���� ��d�, Eq. �5.9�� to the current-current correlation

function. The sum �xy
�0����=�xy

�0,1����+�xy
�0,2���� �Eq. �5.10�� gives a correct classical expression �5.13� for the Hall conductivity �xy

�0���� that
reproduces Eq. �1.5�.
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rn �
1

� +  n

1 + vn���

2�

� +  n
� =

1

 n
�5.11�

for �	�xx
gr �see Eq. �4.28��. Equations �5.10� and �5.11� to-

gether with Eq. �3.8� lead to the final classical expression for
the Hall conductivity,

�xy
�0���� = 2e2a2−dgT

2

�
�
n�0

fn

 n
, �5.12�

or, going back to diffusion propagators,

�xy
�0���� = 2e2a2−dgT

2

�
�D̄↗ − D̄↘ + D̄↙ − D̄↖� . �5.13�

In Eq. �5.13�,

D̄� =
1

S0
2  ds0dsaD̄�s0,sa�

with a=1,2 ,3 ,4 for �= ↗ , ↘ , ↙ ,↖, respectively, and

D̄�r,r�� = �
n�0

�n�r��n
*�r��

 n

is the diffuson without the zero mode at �=0 satisfying Eqs.
�4.8� and �4.17� with �=0,

− D0�r
2D̄�r,r�� = ��r − r�� ,

��n · �rD̄��S = ��H�0�t · �rD̄��S. �5.14�

It follows from Eqs. �5.14� that D̄�r ,r�� is a Green’s function

for the Poisson equation. Actually the propagator D̄�r ,r��
should not be termed “diffuson” anymore, since it describes
the propagation of electron density with Coulomb interaction
taken into account, i.e., the real conduction process.

Equation �5.13� constitutes our main result for the Hall
conductivity of a granular metal in the absence of quantum
effects. We stress that the diagrammatic series in Fig. 9 lead-
ing to Eq. �5.13� describes the classical effect: propagation
of electron density in a disordered metallic sample. The
temperature-independent result �5.13� is valid for arbitrary
temperature T and arbitrary size a of the grains �not neces-
sarily small grains and T	ETh�. The temperature will be
relevant for the quantum effects of the Coulomb interaction
and weak localization, which we consider in Secs. VI and
VII.

B. Properties of Eq. (5.13) for the Hall conductivity �xy
„0…

Let us discuss the basic properties of Eq. �5.13�. For sim-
plicity, we assume that grains have reflectional symmetry in

all three dimensions. Then D̄↗= D̄↙ and D̄↘= D̄↖ due to this
symmetry �for H�0, too�. At zero magnetic field �H=0� we

have D̄↗= D̄↘ and D̄↙= D̄↖ due to the time-reversal sym-
metry D�� ,r ,r��=D�� ,r� ,r�, and therefore �xy

�0��� ,H=0�
=0. The nonzero differences D̄↗− D̄↘= D̄↙− D̄↖ arise only
due to nonzero RHS of the boundary condition Eq. �4.17�,

which represents the edge drift. To understand the sign of

D̄↗− D̄↘ and D̄↙− D̄↖ we recall that the diffuson D�� ,r ,r��
describes the probability of getting from point r� to point r.

In nonzero field �H�0� the edge trajectories for D̄↗= D̄↙

are shorter �if e�0 is assumed� than those for D̄↘= D̄↖, and

therefore D̄↗− D̄↘= D̄↙− D̄↖�0.

Since D̄�

1
a3

1
D0a−2 and the difference D̄↗− D̄↘ is linear in

�H�0, one can estimate

D̄↗ − D̄↘ 

1

a3

�H�0

D0a−2 
 e2�
�xy

gr

a
, �5.15�

where

�xy
gr =

�xy
gr

��xx
gr�2 =

�H�0

�xx
gr =

H

nec

is the specific HR of the grain material expressed in terms of
the carrier density n in the grains �Einstein relation �xx

gr

=2e2�D0 was used in Eq. �5.15��. We see that D̄↗− D̄↘ does
not depend on the intragrain disorder, described by the scat-
tering time �0. The proportionality coefficient in Eq. �5.15� is
determined by the shape of the grains only. Thus, for HC
�Eq. �5.13�� of the system we obtain

�xy
�0� 
 a2−dGT

2�xy
gr

a
,

and for HR �see also Eq. �1.4��

�xy
�0� =

�xy
�0�

��xx
�0��2 
 ad−3�xy

gr = ad−3 H

nec
.

We come to an important conclusion. The Hall resistivity of
the granular system is independent of the intragrain disorder
and tunneling conductance. It is expressed solely via the car-
rier density n of the grain material up to a numerical coeffi-
cient determined by the shape of the grains and the type of
granular lattice.

C. Classical picture

Let us now prove that Eq. �5.13� for the Hall conductivity
indeed reproduces the solution of the classical electrodynam-
ics problem, provided one treats the tunnel contact as a sur-
face resistor with the conductance GT.

The classical HC of the granular medium in the limit
GT	G0 �Eq. �1.3�� can be easily presented in the form of
Eq. �1.5� �see Fig. 1�. The current Iy =GTVy running through
the grain in the y direction causes the Hall voltage drop VH
=RHIy between its opposite banks in the x direction, where
RH is the Hall resistance of the grain and Vy is the Ohmic
voltage drop on the contacts in the y direction. Since for
calculating �xy the total voltage drop per lattice period in the
x direction is assumed zero, the same voltage VH �but with
the opposite sign� is applied to the contacts in the x direction.
Thus, the Hall current equals Ix=GTVH=GT

2RHVy, which
leads to the expression �1.5� for HC.

The Hall resistance RH of the grain is defined via the
difference �Hall voltage� of the electric potential #�r� be-
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tween the opposite banks of the grain in the x direction,

VH = #�sr� − #�sl� = RHIy , �5.16�

when the current Iy = I passes through the grain in the y di-
rection. The current density

j�r� = − �̂0�r#�r� � − � �xx
gr �xy

gr 0

− �xy
gr �xx

gr 0

0 0 �xx
gr ��r#�r�

�5.17�

��̂0 is the conductivity tensor� satisfies the continuity equa-
tion

div j = q�r� �5.18�

and the boundary condition

��n · j��S = 0, �5.19�

where n is the unit vector normal to the grain boundary. The
charge source function q�r� is nonzero on the contacts sur-
face only, �dsdq�sd�= I corresponding to the current I flowing
into the grain through the contact sd and �dsuq�su�=−I cor-
responding to the current flowing out of the grain through the
contact su. The stationary form of Eq. �5.18� is valid up to
the frequencies ���xx

gr, even if I= I�t� is time dependent,
compare with discussion of Eq. �4.28� in Sec. IV C.

Inserting Eq. �5.17� into Eqs. �5.18� and �5.19�, we find
that #�r� is a solution of the following boundary value prob-
lem:

− �r
2# = q�r�/�xx

gr, ��n · �#��S = �H�0��t · �#��S,

�5.20�

where the tangent vector t is given by Eq. �4.18�. Comparing

Eq. �5.20� with Eqs. �5.14�, we see that D̄�r ,r�� is a Green’s
function for the problem �5.20�. The solution to Eq. �5.20�
can thus be written as

#�r� =
1

2e2�

I

S0

 dsdD̄�r,sd� − dsuD̄�r,su��

�Einstein relation �xx
gr =2e2�D0 was used�. Inserting #�r� in

such form into Eq. �5.16�, we obtain for the Hall resistance
of the grain

RH =
1

2e2�
�D̄↗ − D̄↘ + D̄↙ − D̄↖� . �5.21�

Comparing Eq. �5.13� with Eqs. �1.5� and �5.21� we see that
Eq. �5.13� indeed reproduces the classical result.

This establishes the correspondence between our diagram-
matic approach of considering nonzero diffusion modes and
the solution of the classical electrodynamics problem for the
granular system.

Luckily, for simple geometries of the grain �cubic, spheri-
cal� the Hall resistance RH can be obtained from symmetry
arguments without solving the problem, Eq. �5.20�. Suppose
the grain has reflectional symmetry in all three dimensions.
Then it is clear that �1� the largest cross section of the grain
lies in the plane of reflection, �2� the current density j�r� is

perpendicular to the plain of reflection at each point r of the
cross section, �3� the absolute value of j�r� is constant on the
cross section and therefore equal to �j�r��= I /S, where S is
the area of the cross section. So, the Hall voltage Eq. �5.16�
equals VH=�xy

gr �j�r��a=aI /S. Therefore, the Hall resistance is

RH = �xy
gra/S �5.22�

and the Hall resistivity of the granular medium can be ex-
pressed in the form

�xy
�0� =

�xy
�0�

��xx
�0��2 = RHad−2 =

H

n*ec
, �5.23�

where

n* = a3−dAn, A = S/a2 � 1.

The quantity n* defines the effective carrier density of the
granular system. For a 3D sample �many grain monolayers�,
n*=An differs from the actual carrier density n of the grain
material only by a numerical factor A determined by the
shape of the grains and type of the granular lattice. For a 2D
sample n*=aAn for a single grain monolayer or n*=dzAn in
case of several monolayers, where dz is the thickness of the
sample �dz /a is the number of monolayers�.

We remind the reader that Eq. �5.23� was obtain under the
following assumptions: �a� diffusive limit inside the grains,
l	a; �b� the mean-free path l is the same for all grains; �c�
the tunneling conductance GT is the same for all contacts.
Having established the correspondence between our dia-
grammatic approach and the classical solution of the prob-
lem, we can now show that the result �5.23� is actually valid
in a much more general case, when �i� the intragrain disorder
is ballistic, l�a; �ii� the mean-free path li varies from grain
to grain �iii� the tunneling conductance GTi+a,i varies from
contact to contact. The statement �i� follows from the fact
that the above classical consideration leading to Eq. �5.22�
involve only the symmetry properties of the current distribu-
tion j�r� and therefore hold for the grains with ballistic dis-
order �l�a� as well. The statement �ii� is true, since the Hall
resistance RH �Eq. �5.22�� of the grain is independent of the
mean-free path li, and, hence, is the same for all grains i
provided only their shape is the same. Finally, using the stan-
dard Ohm and Kirchhoff laws, we obtain that the Hall volt-
age between the opposite banks of the sample in the x direc-
tion depends on the total Ohmic current flowing through the
sample in the y direction. Hence, the Hall voltage is essen-
tially independent of the distribution of the tunneling con-
ductances GTi+a,i, and the HR of the system is still given by
Eq. �5.23�, which proves the statement �iii�.

Therefore, the result �5.23� for Hall resistivity is appli-
cable to real granular systems, in which fluctuations of the
intragrain mean-free path l and, most importantly, the inter-
grain tunneling conductance GT are always present.

To conclude this section, we obtain that the classical Hall
resistivity �Eq. �5.23�� of a granular system in the metallic
regime, being independent of parameters that describe
Ohmic dissipation, possesses a great deal of universality,
reminiscent of that in ordinary disordered metals �Eq. �1.1��.
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Being classical, however, Eq. �5.23� describes the behav-
ior of the Hall resistivity at high enough temperatures, when
quantum effects can be neglected. At sufficiently low tem-
peratures quantum effects of Coulomb interaction and weak
localization set in and can significantly affect electron trans-
port. In the next section we study quantum corrections to the
obtained results �5.13� and �5.23� due to the Coulomb inter-
action between the electrons.

VI. QUANTUM EFFECTS OF THE COULOMB
INTERACTION

A. Basic considerations

Diagrammatic approach enables us to incorporate quan-
tum effects of Coulomb interaction on the Hall conductivity
into the developed scheme. We perform calculations to the
first order in the screened Coulomb interaction with the ex-
pansion parameter 1 /gT. We assume the diffusive limit for
the intragrain dynamics and neglect the diagrams that are
small in �0ETh
 �l /a�2	1. The ballistic limit can be treated
similarly, although in this case one has to take such diagrams
into account.

Technically, one considers the diagrams for the “bare”
conductivity �xy

�0� shown in Fig. 9 and connects different elec-
tron lines by the interaction lines corresponding to the
screened Coulomb interaction V�" ,ri ,rj�� �Eq. �4.31��. It is
important that for the quantum interaction corrections the
zero-mode part V�" , i , j� �Eq. �4.32�� of the interaction

V�" ,ri ,rj�� does not drop out and gives a contribution larger
than the nonzero intragrain modes �ijv�" ,ri ,rj�� �Eq. �4.28��
�we provide an estimate below�. Therefore for the interaction
lines that describe the quantum corrections to the classical
result we can use the zero-mode part V�" , i , j� of the inter-
action. Further, depending on the sign structure of energies
of the Green’s functions involved, some interaction vertices
are renormalized by the diffusons and some are not.

Two types of diagrams can be identified: �i� the interac-
tion V�" , i , j� connects different electron loops of the dia-
grams such as in Figs. 10�a� and 10�b�; �ii� the interaction
V�" , i , j� connects points on the same electron loop, such as
in Figs. 10�c� and 10�d�. It is straightforward to show that the
former possibility �i� always gives zero: in each case contrib-
uting diagrams cancel each other identically, an example is
shown in Figs. 10�a� and 10�b�. So, we come to an important
simplification: electron loops in Fig. 9 are renormalized by
the interaction independently.

The temperature T, being irrelevant for the single-particle
classical transport �Eq. �1.5� for �xy

�0��, becomes important for
quantum effects of Coulomb interaction. An important en-
ergy scale here is the tunneling escape rate �. For T�� the
thermal length LT

*=	D0
* /T	a for the intergrain motion

�D0
*=�a2 is the effective diffusion coefficient� does not ex-

ceed the grain size and only the contributions coming from
spatial scales of the order of the grain size a are significant.
At T� the contributions from the scales LT

*�a exceeding
the grain size also become important.

We start with the former regime T�� in the following
section. Note that the corrections that will be discussed in
Sec. VI B are specific to granular systems and absent in
HDMs. At the same time they, as we find, govern the T
dependence of HC and HR in a wide range of temperatures.
The corrections analogous to those in HDMs �“Altshuler-
Aronov” corrections� arise from large spatial scales ��a�,
are relevant at T	� and will be addressed afterwards in Sec.
VI C, where we consider the case T�.

B. “High” temperatures Tš�

1. Basic considerations

First, we consider the range of temperatures T�� greater
than the escape rate �. In this regime each tunneling process
brings a small factor � /T	1. Therefore the main contribu-
tion comes from the diagrams which contain minimal num-
ber of hops between the grains as compared to the diagrams
for the bare HC �xy

�0�. This means that the screened zero-mode
interaction can be taken in the form �see Eq. �4.32��

V�",q� =
Ec�q�

1 + 2Ec�q��q/���"��
�6.1�

and for the diffusons renormalizing the interaction vertex we
can neglect tunneling completely, i.e., take them as

D�",ri,rj�� = �ijD�",ri,rj�� .

It is very important that since the interaction V�" , i , j� is
coordinate independent within each grain, the intragrain dif-

FIG. 10. Quantum corrections to Hall conductivity of a granular
metal due to Coulomb interaction. Important point: electron loops
in diagrams of Fig. 9 are renormalized independently, the diagrams
with interaction line connecting different electron loops cancel each
other, as is the case, e.g., for the diagrams �a� and �b�. Nonvanishing
contributions come from the independent renormalization of elec-
tron loops by the interaction, such as in diagrams �c� and �d�.
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fusons renormalizing the interaction vertex contain only the
zero mode 1 / ��"�V�, whereas the nonzero modes drop out
automatically due to the orthogonality condition �4.20� �we
do not simply neglect them�,

 dri�D�",ri,ri��V�",i,j� =
1

�"�
V�",i,j� .

Assuming T��, we do not assume the temperature T or
the frequencies " much smaller than the Thouless energy
ETh in this section. As we will see, the only way to clearly
identify the physics of the contributions and obtain a correct
upper cutoff for the logarithmically divergent quantities is to
include the range T ,"�ETh into consideration.

As explained above, we may renormalize electron loops
shown in Fig. 9 independently of each other. There are three
different types of electron loops in Fig. 9: �1� the �tunneling
current�-�tunneling current� correlator �II� of the diagram in
Fig. 9�a�; �2� the �tunneling current�-density correlators �In�
in Fig. 9�b� connected by the screened interaction v�� ,r ,r��;
�3� the density-density correlators �nn� �i.e., the intragrain
polarization operator P�� ,r ,r��, Eq. �4.26��, in Fig. 9�c�,
which are the insertions into the bare Coulomb interaction
line.

Since the geometry factor fn �Eqs. �5.5� and �5.6�� is the
same for all diagrams and the properties of the granular array
are assumed the same in the x and y directions, let us draw
the diagrams in the “longitudinal geometry” �see Figs. 11,
13, and 14�. For our purpose it is only important now that
there is a “central” grain with a nonzero-mode diffuson and
there are two “adjacent” grains. External tunneling vertices
are attached to the contacts between the central and adjacent
grains.

For each diagram one has to take four possibilities �two
for each contact� of attaching external tunneling vertices into
account, as in Fig. 7. Only one such possibility is shown in
Figs. 11, 13, and 14. Further, for each diagram one has to
consider �i� the up–down reversal, if the diagram does not
transfer to itself, �ii� the left–right reversal, if the diagram

does not transfer to itself. We introduce “up–down reversal”
and “left–right reversal” multiplication factors �u/d and �l/r

correspondingly: �u/d ,�l/r=1, if the reversal is not possible,
�u/d ,�l/r=2, if the reversal is possible.

The summation region over the fermionic frequency � of
the electron loop and bosonic frequency " carried by the
interaction line is determined by the analytical properties of
the Green’s functions involved. After the integration over the
Green’s functions momenta the expressions become indepen-
dent of � and the summation over � can be performed. This
always results in the sum

2�T �
0�"��,

−"���0

F��,"� + 2�T �
��",

−����0

F��,"�

= �
0�"��

"F��,"� + � �
"��

F��,"� = �
"�0

$�,"F��,"� ,

�6.2�

standard for the first-order interaction corrections
calculations.1 We have introduced the function

$�," = �" , 0 �"�� ,

� , "�� ,
�

for compactness. The diagrams considered here may contain
either one or two summations �6.2�. We introduce the “sum”

FIG. 11. Diagrams for the interaction corrections to the intragrain polarization operator Pn���=2�1−� / ��+ n�� �Eq. �4.26��. The
corresponding expressions are given in Table I. Gray blocks depict nonzero diffusion modes, rendered with lines blocks depict zero-mode
diffusons 1 /" renormalizing interaction vertices, dashed lines stand for the impurity correlation function �3.3�. The crossed block in diagram
�c� is the Hikami box �see Fig. 12�.

FIG. 12. Hikami box. Analytical expression for the Hikami box
in case of coordinate-independent interaction potential is −��+"
+ n�.
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multiplication factor �s correspondingly, �s=1 or �s=2. So,
each “topologically unique” diagram comes with an overall
multiplication factor

� = �s�u/d�l/r. �6.3�

We start by considering the corrections to the intragrain po-
larization operator.

2. Corrections to the intragrain polarization operator P„� , r ,r�…

The set of diagrams for the first-order interaction correc-
tions to the intragrain polarization shown Fig. 11 is the same
as the one for a bulk system.31 The crossed region in diagram
11�c� is a Hikami box32,33 shown in Fig. 12, which analytical
expression for the case of coordinate-independent interaction
is −��+"+ n�.

We present the correction to the nth mode Pn���=2�1
−� / ��+ n�� of the polarization operator P�� ,r ,r�� �Eq.
�4.26�� in the form

�Pn
�i���� = 2T �

"�0
$�,"�i�n

�i���,"�, i = c,d,e,f, �6.4�

where the expressions for �n
�i��� ,"� and the multiplication

factors �i=�i
s�i

u/d�i
l/r �Eq. �6.3�� are given in Table I �the

factor 2 stands for spin degeneracy, the diagrams are labeled
in correspondence with the diagrams for ��xy

�0,1���� and

��xy
�0,2���� below�. In Table I and Fig. 11, the quantity

V0�"�=V�" , i , i� is the zero-mode interaction in a given
grain. Summing the contributions �6.4�, we obtain that the
total correction to the intragrain polarization operator Pn���
due to the zero-mode interaction V0�"� vanishes,

�Pn
c��� + �Pn

d��� + �Pn
e��� + �Pn

f ��� = 0. �6.5�

This is an expected result, since due to the gauge invariance
the constant interaction potential cannot affect physical
quantities,31,34 expressed in this case by the density-density
correlation function.

As a result, we obtain that the screened nonzero-mode
Coulomb interaction v�� ,r ,r�� �Eq. �4.28�, double wavy
line in Fig. 9�d�� does not acquire any correction. Therefore
we should only renormalize the electron loops �II� and �In�
shown in Figs. 9�a� and 9�d� explicitly.

3. Interaction corrections to �xy
„0,1…

„�… and �xy
„0,2…

„�…

Now we renormalize the electron loop �II� of �xy
�0,1����

�Eq. �5.7�, Fig. 9�a�� and two loops �In� of �xy
�0,2���� �Eq.

�5.9�, Fig. 9�d��. The nonzero modes vn��� of the screened
intragrain interaction �double wavy line in Fig. 9�d�� are not
renormalized according to the result of the previous section.

All corrections to �xy
�0,1���� and �xy

�0,2���� may be pre-
sented in the form

��xy
�i���� =

gT
2

�
�
n�0

fnT �
"�0

$�,"�i�n
�i���,"� . �6.6�

The geometry factor fn �Eqs. �5.5� and �5.6�� arises, when
corrections to all diagrams in Fig. 7 from the four closest
contacts are taken into account. The sets of diagrams giving
corrections to �xy

�0,1���� and �xy
�0,2���� are shown in Figs. 13

and 14, and the corresponding expressions for �n
�i��� ,"� and

�i=�i
s�i

u/d�i
l/r are given in Tables II and III, respectively. For

each diagram in Figs. 13 and 14 one must take four possi-
bilities �two for each contact according to Eq. �3.11� and as
shown in Fig. 7� of attaching external tunneling vertices into
account. In the expressions,

TABLE I. Corrections to the intragrain polarization operator
Pn=2�1−� / ��+ n�� �Eq. �4.26��.

i Expression for �n
�i��� ,"� �i

s �i
u/d �i

l/r

c −��+"+ n�
1

��+ n�2

1

"2V0�"� 1 2 1

d
1

�+"+ n

1

"2V0�"� 1 2 1

e
1

�+ n

1

�+"+ n

1

"
V0�"� 1 2 2

f
1

��+ n�2

1

�+"+ n
V0�"� 1 2 1

FIG. 13. Diagrams for the Coulomb interaction corrections to �xy
�0,1���� �Eq. �5.7�, Fig. 9�a�� describing renormalization of the �tunneling

current�-�tunneling current� correlator �II� of Fig. 9�a�. Open circles denote tunneling vertices placed at the contacts. Other elements are
explained in the caption to Fig. 11.
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V0�"� = V�",i,i� = �
q

V�",q�

is the “on-cite” interaction of the grain,

V1�"� = V�",i + ei,i� = �
q

cos�qia�V�",q�, i = x,y ,

is the interaction between the neighboring grains, and

V2�"� = V�",i + ex + ey,i� = �
q

cos�qxa�cos�qya�V�",q�

is the interaction between the next-to-the-nearest-
neighboring grains. The interaction V�" ,q� is given by Eq.
�6.1�.

Note that the diagram 13�d�, giving a correction to
�xy

�0,1����, does not have an analog for �xy
�0,2����, because this

would mean connecting different electron loops by the inter-
action line, which gives 0, as discussed before. The crossed
region in diagrams 13�c1� and 14�c2� is the Hikami box �Fig.
12�.

Let us perform partial summation of the contributions
�6.6� as follows:

�a1�n
a1��,"� + �a2�n

a2��,"� = − 4
1

"2V0�"�rn, �6.7a�

�b1�n
b1��,"� + �b2�n

b2��,"� = 4
1

"2V1�"�rn, �6.7b�

�
i=c1,c2,

f1,f2,f3

�i�n
�i���,"� = 2

1

� + " +  n

1

"2V0�"� − 4
1

"2V0�"�rn,

�6.7c�

�d�n
d��,"� = 2

1

� + " +  n

1

"2V2�"� , �6.7d�

�
i=e1,

e2,e3

�i�n
�i���,"� = 4�−

1

� + " +  n

1

"2V1�"� +
1

"2V1�"�rn� ,

�6.7e�

where rn=1 / n is the “resistance” mode arising as a sum of
the series shown in Fig. 9 and given by Eq. �5.11�.

We see that two functionally different forms arise. One
contains the frequency-independent resistance modes rn
=1 / n, the other contains nonzero diffuson modes 1 / ��
+"+ n�. Summing these two independently, we present the
total first-order interaction correction ��xy��� to the classi-

TABLE II. Corrections to �xy
�0,1���� �Eq. �5.7�, Fig. 9�a��.

i Expression for �n
�i��� ,"� �i

s �i
u/d �i

l/r

a1 −
1

�+ n

1

"2V0�"� 2 1 2

b1
1

�+ n

1

"2V1�"� 1 2 2

c1 −��+"+ n�
1

��+ n�2

1

"2V0�"� 1 2 1

d
1

�+"+ n

1

"2V2�"� 2 1 1

e1
1

�+ n

1

�+"+ n

1

"
V1�"� 1 2 2

f1
1

��+ n�2

1

�+"+ n
V0�"� 1 2 1

FIG. 14. Diagrams for the Coulomb interaction corrections to �xy
�0,2���� �Eq. �5.9�, Fig. 9�d��, describing renormalization of the �tunneling

current�-density correlators �In� of Fig. 9�d�.
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cal result �5.10� for the current-current correlation function
�xy

�0���� as

��xy��� = ��xy
TA��� + ��xy

VD��� , �6.8�

where

��xy
TA��� = − 8

gT
2

�
�
n�0

fnT �
"�0

$�,"rn
1

"2 �V0�"� − V1�"��

�6.9�

and

��xy
VD��� = 2

gT
2

�
�
n�0

fnT �
"�0

$�,"
1

� + " +  n

!
1

"2 �V2�"� + V0�"� − 2V1�"�� . �6.10�

The corresponding correction ��xy���=��xy
TA���

+��xy
VD��� to Hall conductivity

�xy��� = �xy
�0� + ��xy��� . �6.11�

is obtained from Eq. �6.8� according to Eq. �3.8�:

��xy��� = 2e2a2−d 1

�
��xy��� . �6.12�

Let us discuss the obtained results �6.8�–�6.10�. First of
all, note that the corrections ��xy

TA��� and ��xy
VD��� cannot

be attributed to certain separate sets of diagrams: the dia-
grams 13�a1�, 14�a2�, 13�b1�, and 14�b2� contribute to
��xy

TA��� only �Eqs. �6.7a� and �6.7b��, the diagram 13�d�
contributes to ��xy

VD��� only �Eq. �6.7d��, but the rest of the
diagrams contain parts corresponding both to ��xy

TA��� and
��xy

VD���, as seen from Eqs. �6.7c� and �6.7e�.

Note also that the corrections ��xy
TA��� and ��xy

VD��� van-
ish separately in the case of constant interaction potential,
i.e., when V0�"�=V1�"�=V2�"�. This property is not acci-
dental and is enforced by the gauge invariance �see, e.g.,
Refs. 31 and 34�: constant interaction potential results in a
shift of the chemical potential of the whole electron system
and therefore does not affect physical quantities expressed
diagrammatically as chains of closed electron loops �see Fig.
9�. This fact serves as an important check of our results
�6.8�–�6.10�. We remind the reader that Eq. �6.5� is also a
consequence of the gauge invariance.

The physical processes leading to the corrections ��xy
TA���

and ��xy
VD��� are most clearly identified from the diagrams

that contribute to either one of the quantities, i.e., from the
diagrams 13�a1�, 14�a2�, 13�b1�, and 14�b2� for ��xy

TA��� and
from the diagram 13�d� for ��xy

VD���.

4. “Tunneling anomaly” contribution ��xy
TA
„�…

First, consider the correction ��xy
TA��� �Eq. �6.9��. Clearly,

the diagrams 13�a1�, 14�a2�, 13�b1�, and 14�b2�, contributing
solely to ��xy

TA���, describe the effect of Coulomb interaction
on the process of electron tunneling through the contact.
Therefore, the correction ��xy

TA��� should be attributed to the
tunneling anomaly1,11,12 �TA� effect in a granular metal. The
correction ��xy

TA��� corresponds to the independent renor-
malization of the tunneling conductances GT of the indi-
vidual contacts in formula �1.5� for the bare classical HC
�xy

�0�
GT
2RH, whereas the Hall resistance RH of the grain re-

mains unaffected.
Indeed, the "-independent resistance modes rn �Eq.

�5.11�� can be taken out of the sum over " in Eq. �6.9�. After
that the summed over " expression becomes independent of
the mode index n and we can reduce the relative correction
to the current-current correlation function and HC to the
form

��xy
TA���
�xy

�0� =
��xy

TA���
�xy

�0����
= 2

�gT���
gT

, �6.13�

where we have introduced the quantity

�gT���
gT

= −
1

�
4T �

"�0
$�,"

1

"2 �V0�"� − V1�"�� .

�6.14�

The expression in the RHS of Eq. �6.14� should be treated as
a relative correction to the tunneling conductance gT of the
individual contact due to the tunneling anomaly. �The factor
2 in Eq. �6.13� stands for two contacts according to the
square GT

2 in Eq. �1.5� for �xy
�0�.� Such physical interpretation

most clearly arises from the calculations of interaction cor-
rections to LC. The bare LC �xx

�0�
gT �Eq. �1.4�� �in the low-
est in gT /g0	1 order� is expressed solely via the tunneling
conductance gT and the interaction correction to �xx

�0� corre-
sponds to the renormalization of gT, since no other physical
parameters are available. The interaction corrections to LC
�xx

�0� were studied in Refs. 4 and 5 and at T�� the correction
��xx

TA��� to LC

TABLE III. Corrections to �xy
�0,2���� �Eq. �5.9�, Fig. 9�d��.

i Expression for �n
�i��� ,"� �i

s �i
u/d �i

l/r

a2 −
1

�+ n

1

"2V0�"�� 2�

�+ n
vn� 2 1 2

b2
1

�+ n

1

"2V1�"�� 2�

�+ n
vn� 1 2 2

c2 −
�+"+ n

��+ n�2"2V0�"�� 2�

�+ n
vn� 1 2 2

e2
1

�+ n

1

�+"+ n

1

"
V1�"�� 2�

�+ n
vn� 1 2 2

e3
1

�+"+ n

1

"2V1�"�� 2�

�+ n
vn� 1 2 2

f2
1

��+ n�2

1

�+"+ n
V0�"�� 2�

�+ n
vn� 1 2 2

f3
1

�+ n

1

�+"+ n

1

"
V0�"�� 2�

�+ n
vn� 1 2 2
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�xx��� = �xx
�0� + ��xx

TA��� �6.15�

was obtained

��xx
TA���
�xx

�0� =
�gT���

gT
. �6.16�

Therefore, according to the form of Eq. �6.13�, the correc-
tion ��xy

TA��� indeed corresponds to the renormalization of
the tunneling conductances GT in Eq. �1.5� and does not
affect the Hall resistance RH of the grain.

5. Virtual diffusion contribution ��xy
VD

„�…

Now let us discuss the correction ��xy
VD��� �Eq. �6.10��.

The diagram 13�d�, which contributes solely to ��xy
VD���,

describes electron diffusion through the central grain. The
corresponding diffuson D��+" ,r ,r�� enters Eq. �6.10� as
the combination

�
n�0

fn

� + " +  n
= D↗�� + "� − D↘�� + "� + D↙�� + "�

− D↖�� + "�

�see Eqs. �5.4� and �5.5�� and therefore contains nonzero
modes n�0 only.

As discussed above, one cannot “construct” the propaga-

tor D̄�r ,r�� �see Eqs. �5.14� and �5.11��, which describes the
real propagation of electron density in metals �basically, the
classical conduction process�, from the diffuson D��
+" ,r ,r�� by inserting interaction lines into the central dif-
fuson in the diagram 13�d�: the corresponding diagrams sim-
ply cancel each other. This emphasizes virtual character of
the diffusion: real diffusion is not possible in metallic
samples, since nonequilibrium electron density created in the
course of diffusion is screened by Coulomb interaction.

Thus, the correction ��xy
VD��� describes the process of

“virtual diffusion” �VD� of electrons through the grain.

6. Why � ,TÈETh are necessary

We emphasize that it has become possible to identify two
physically different contributions ��xy

TA��� �Eq. �6.9�� and
��xy

VD��� �Eq. �6.10�� to the total correction ��xy��� �Eq.
�6.8�� only because we have included “high” frequency range
"�ETh in our calculations. At frequencies "	ETh the ex-
pressions in Eqs. �6.9� and �6.10� acquire the same functional
form, since 1 / ��+"+ n��1 / n=rn and one cannot distin-
guish between them.

Including the frequencies "�ETh has complicated the
calculations significantly. Indeed, for "	ETh one may
consider the diagrams 13�a1�, 13�b1�, 13�c1�, 13�d� only.
The rest of the diagrams are smaller than these ones
in " /ETh	1 or � /ETh	1 and become comparable
to them only at " ,��ETh. Considering the diagrams
13�a1�,13�b1�,13�c1�,13�d� only and neglecting the frequen-
cies � ," compared to  n�ETh in the diffusons 1 / ��+ n�
and 1 / ��+"+ n�, we would obtain the total correction
��xy��� �Eq. �6.8�� in the form

��xy��� = − 2
gT

2

�
�
n�0

fnT �
"�0

$�,"
1

 n

1

"2

! �3V0�"� − 2V1�"� − V2�"�� , �6.17�

which is just the sum of ��xy
TA��� and ��xy

VD��� provided one
neglects �+" in 1 / ��+"+ n�. Clearly, the above physical
analysis would not be possible based on the form of Eq.
�6.17�.

Another related drawback of considering small frequen-
cies "	ETh only will be clear in the next section, where we
turn to the temperature dependence of the obtained correc-
tions.

7. Temperature dependence of the corrections

Now let us discuss what consequences the corrections
�6.8�–�6.10� have on the Hall conductivity �xy��� and, more
importantly, on the Hall resistivity

�xy��� =
�xy���
�xx

2 ���
= �xy

�0� + ��xy��� ,

which is directly measurable experimentally. The conductivi-
ties �xy��� and �xx��� are given by Eqs. �6.11� and �6.15�,
respectively, and the “bare” HR �xy

�0� by Eq. �5.23�.
First of all, since �xy

�0� �Eq. �5.23�� simply does not contain
GT, the tunneling anomaly effect does not influence the Hall
resistivity. Indeed, according to Eqs. �6.13� and �6.16�, we
obtain that the correction to HR due to TA vanishes,

��xy
TA���
�xy

�0� =
��xy

TA���
�xy

�0� − 2
��xx

TA���
�xx

�0� � 0.

Next, since the analog of VD correction �6.10� is absent for
LC �xx��� �see Eq. �6.15�� in the leading in gT /g0	1
order,35 the correction to Hall resistivity due to virtual diffu-
sion process is

��xy
VD���
�xy

�0� =
��xy

VD���
�xy

�0� =
��xy

VD���
�xy

�0����
.

Therefore, we obtain that the total correction

��xy��� = ��xy
TA��� + ��xy

VD���

to HR at temperatures T�� is due to VD effect only:

��xy���
�xy

�0� =
��xy

VD���
�xy

�0� .

Now, let us discuss the temperature dependence of the
obtained corrections. The Coulomb potential �6.1� is com-
pletely screened and equal to the inverse polarization opera-
tor,

V�",q� =
�

P0�",q�
=
�"

2�q
,

for frequencies "gTEc. In the limit of high frequencies
"�gTEc the Coulomb potential �6.1� remains unscreened
and V�" ,q��Ec. The expression
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1

"2V�",q� =
1

"

�

2�q
�6.18�

in Eqs. �6.9� and �6.10� is thus proportional to 1 /" for "
gTEc. Therefore, the sum of over " is logarithmically di-
vergent and we have to determine the low and high fre-
quency cutoffs.

In the dc limit �	T, the low-frequency cutoff for the
sum over " is set by the temperature T �for T���. This can
be obtained by the analytical continuation of Eqs. �6.9� and
�6.10� to real frequencies � and taking the limit �	T ac-
cording to

T �
"m�0

�$�n,"m
F�i"m��i�n→�+i0,�	T

= −
�

4�


−�

�

d�
d

d�

� coth

�

2T
�F��� ,

we do not repeat this standard procedure here �see, e.g., Refs.
19 and 34, the integer indices of the Matsubara frequencies
�n and "m were written for clarity�.

The high-frequency cutoff is different for TA contribution
��xy

TA and VD contribution ��xy
VD, which is a direct conse-

quence of their different physical origin. According to Eq.
�6.14� the upper cutoff for ��xy

TA is gTEc. At "�gTEc we
have V�"� /"2�Ec /"2 and the sum converges. Therefore,
the correction �6.14� to the tunneling conductance gT takes
the form4,5

�gT�T�
gT

= −
1

2�gTd
ln

gTEc

T
�6.19�

and for the TA correction to HC from Eqs. �6.9� and �6.13�
we obtain

��xy
TA�T�
�xy

�0� = −
1

�gTd
ln

gTEc

T
. �6.20�

The lattice-specific factor 1 /d arises as an integral

1

d
= adddq

�2��d

1 − cos qxa

�
�

�1 − cos q�a�
. �6.21�

For the VD contribution ��xy
VD the summed over " ex-

pression contains additional " in the denominator coming
from the intragrain nonzero diffusion mode 1 / ��+"+ n�.
Therefore, the expression is proportional to 1 /" provided
not only "gTEc, but also "ETh. Thus, the upper cutoff
is the minimum of the two quantities, i.e., min�ETh,gTEc�.
Calculating the sum in Eq. �6.10� and extracting �xy

�0� with the
help of Eq. �5.13�, we obtain

��xy
VD�T�
�xy

�0� =
cd

4�gT
ln�min�gTEc,ETh�

T
� , �6.22�

where

cd = adddq

�2��d

�1 − cos qxa��1 − cos qya�
�
�

�1 − cos q�a�
�6.23�

is the lattice form factor. Appearance of the Thouless energy
ETh as an additional cutoff in Eq. �6.22� reflects the diffusive
nature of the contribution. Virtual diffusion process is sup-
pressed for T�ETh, since in this case the intragrain thermal
length LT=	D0 /Ta becomes smaller than the size a of the
grain.

We conclude that the total correction to HR at tempera-
tures T�� is due to virtual diffusion process only and equals

��xy�T�
�xy

�0� =
��xy

VD�T�
�xy

�0� =
cd

4�gT
ln�min�gTEc,ETh�

T
� .

�6.24�

We see that due to the logarithmic divergence of the cor-
rections �6.20� and �6.22� one is forced to go to the frequen-
cies "�ETh in order to obtain a correct upper cutoff, even if
one considers the temperatures T	ETh. This has direct con-
sequences on physical quantities. The upper cutoff also de-
termines the upper bound for the temperature range, in which
the corrections have the ln T dependence of Eqs. �6.20� and
�6.22�. So, HR �xy�T�=�xy

�0�+��xy�T� is ln T dependent ac-
cording to Eq. �6.24� for �Tmin�gTEc ,ETh�, whereas LR
�xx�T�=1 /�xx�T� is ln T dependent according to Eq. �6.19�
for �TgTEc. For T�min�gTEc ,ETh� the relative correc-
tion to HR ��xy�T� /�xy

�0�1 /gT becomes insignificant. The
ratio of gTEc and ETh can be arbitrary in a real system. In
case ETh	gTEc HR �xy�T� is ln T dependent in a narrower
range �TETh than LR �xx�T�. We emphasize that pertur-
bative approach used by us is applicable as long as the rela-
tive correction �6.24� is small.

Note that the integrals over q in Eqs. �6.21� and �6.23� do
not diverge at small qa	1, although �q=2����1
−cos q�a�→0 as qa→0. This is a consequence of the
gauge-invariance mentioned previously. At the same time,
this is not the case for the density of states.4

The lattice factors 1 /d and cd in Eqs. �6.20�, �6.22�, and
�6.24� are not universal and are specific for quadratic or cu-
bic lattice we considered. However the ln T dependence itself
is a result of the screened form of the Coulomb interaction in
granular metals and is robust to the lattice structure. For a
different type of lattice the logarithmic dependence of Eqs.
�6.20�, �6.22�, and �6.24� remains the same, although numeri-
cal prefactors may be different.

Moreover, we expect the logarithmic form of Eqs. �6.20�,
�6.22�, and �6.24� to persist even if one allows for fluctua-
tions �at least, moderate� of tunneling conductances GT from
contact to contact. The reason is that the logarithmic contri-
bution arises from the integration over frequency:
�T

gTEcd" /"=ln�gTEc /T�, which is “decoupled” from the in-
tegration over quasimomentum q in Eqs. �6.9� and �6.10�
�see Eq. �6.18�� in the considered range of ". The tunneling
conductance gT enters as an upper cutoff, which precise
value with logarithmic accuracy is not important. So, for a
realistic array with randomly distributed tunneling condcu-
tances the form of Eqs. �6.20�, �6.22�, and �6.24� should
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remain, although the lattice structure factors 1 /d and cd
should be replaced by some other distribution-dependent fac-
tors of the order of unity and gT by some distribution-
averaged value.

We mention in this respect that the logarithmic renormal-
ization of individual conductances for an array with ran-
domly distributed tunneling conductances was studied by
Feigelman, Ioselevich, and Skvortsov in Ref. 36 and, indeed,
it was shown that the ln T dependence of Eq. �6.19� for the
effective tunneling conductance persists.

8. Estimate for the contribution from nonzero interaction modes

As we claimed above, coordinate-dependent intragrain in-
teraction modes �ijv�" ,ri ,rj�� �Eq. �4.28�� of the screened
potential V�" ,ri ,rj�� �Eq. �4.31�� give a smaller contribution
than the zero-mode part V�" , i , j� �Eq. �4.32�� in the relevant
range " ,TETh. We provide an estimate here.

Let us revise, for example, the diagrams 13�a1� and
14�a2� taking now nonzero modes of the screened interaction
into account. For the block in the right grain, we have

T �
"�0

 drdr�D�",s,r�V�",r,r��D�",r�,s�

= T �
"�0

� 1

"2V0�"� + �
n�0

��n�s��2

�" +  n�2

1

�
vn�"�� .

The first term in the RHS is the contribution from the zero-
mode interaction V0�"� we had before, whereas the second
one is the contribution from nonzero modes vn�"�, which we
want to estimate now �s is a point on the contact�. Since
V0�"���" /� for "gTEc, the first term gives the logarith-
mic contribution �6.19� to the conductivity

T �
"�0

1

"2V0�"� �
1

gT
ln

gTEc

T
. �6.25�

As vn�"���"+ n� / n for "min�1 /�0 ,�xx
gr�=1 /�0, the

contribution from nonzero modes is estimated as

T �
"�0

��
n�0

1

" +  n

1

 n
�

1

�D0


T

�

d"
1/a

� dq

" + D0q2

�
1

�pFl�2 �1 − �	�0 max�T,ETh��

�6.26�

�here ��1 is a cutoff-dependent number�. The obtained con-
tribution from nonzero modes is nothing else but the tunnel-
ing anomaly in the 3D case19,37,38 �since the grains are three
dimensional�, the square root describing well-known singu-
larity. We see that the contribution �6.26� from nonzero
modes is smaller than the contribution �6.25� from zero
modes if the condition

g0/gT � a/l �6.27�

is met. Since g0�gT �Eq. �1.3��, for ballistic grains �l�a�
this is always the case. More important, however, is that in
the relevant temperature range TETh the contribution

�6.26� is T independent. Therefore, even if the condition
�6.27� is not well met, nonzero modes give an inessential
T-independent renormalization of the bare quantities for T
ETh not affecting the overall T dependence of the HC and
HR in that range.

C. “Low” temperatures T›�

1. Basic considerations

Now we want to include the region of temperatures T
� of the order or smaller than the escape rate � into our
considerations. In this regime the thermal length for the in-
tergrain motion LT

*=	�a2 /T�a is greater than the size of
the grain a and quantum phenomena can occur not only in-
side the grains, but also at spatial scales much exceeding the
grain size.

The technical complication in considering T� instead
of T�� is that we have to take tunneling fully into account.
At the same time we still have a small parameter � /ETh
	1 �Eq. �1.2��, which allows us to neglect nonzero intra-
grain modes compared to the zero modes as long as we
consider the frequencies "	ETh.

As we have discussed in the previous section, even for
temperatures T	ETh considering "�ETh in the expression

��xy��� = �
"�0

$�,"F�"�

for the correction to HC is necessary in order to obtain a
correct upper cutoff for logarithmically the diverging quan-
tities. At the same time for "�ETh the results must match
with those of the previous section, since for "�� one can
neglect tunneling in the expressions.

Therefore, to simplify our calculations we do assume "
	ETh in this section. Having obtained the results limited by
"	ETh, we determine the upper cutoff by matching them

FIG. 15. Diagrams for the interaction corrections to Hall con-
ductivity arising from spatial scales of the order of the grain size
�“short-scale” contributions� at arbitrary compared to � tempera-
tures T. Gray blocks denote nonzero-mode intragrain diffusons

D̄�0,r ,r�� �Eq. �4.21��, whereas rendered with lines blocks denote
zero-mode diffusons D0�" , i , j� �Eq. �4.30�� of the whole system.
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with the results of the previous section in the range �	"
	ETh, where both results are applicable.

The diagrams for T� can be obtained from the dia-
grams in Figs. 13 and 14 for T�� by including higher or-
ders in tunneling. As we restrict ourselves to low frequencies
"	ETh, only four diagrams 13�a1�, 13�b1�, 13�c1�, and
13�d� should be considered and the rest of the diagrams are
smaller in " /ETh	1. Taking tunneling into account we
make sure that in each diagram only one grain contains non-
zero diffusion modes necessary to have a nonvanishing con-
tribution to the Hall current, whereas in the rest of the grains
only the zero mode is retained. The zero-mode interaction
potential V�" , i , j� is now taken in the form �4.32�. Consid-
ering the range � ,"	ETh, we also neglect the frequency
dependence of nonzero modes now, 1 / ��+"+ n�=1 / n and
1 / ��+ n�=1 / n.

2. Short-scale contribution

Including higher orders in tunneling in diagrams 13�a1�,
13�b1�, and 13�c1� is straightforward. One has to substitute
the zero-mode diffusons �ij /" renormalizing the interaction
vertices by their form D0�" , i , j� �Eq. �4.30��, which takes
tunneling into account,

�ij
1

"
→ D0�",i,j�, D0�",q� =

1

" + �q
.

This results in the replacement of V�" , i , j� /"2 in the ex-
pressions for �n

�i��� ,"�, i=a1,b1 ,c1, �see Table II� by

Ṽ�",i,j� = �
k,l

D0�",i,k�V�",k,l�D0�",l,j� ,

Ṽ�",q� = D0
2�",q�V�",q� .

Consequently, instead of Eqs. �6.7a�, �6.7b�, and �6.7c� we
obtain �Figs. 15�a�–15�c��

�a�n
a��,"� = − 4Ṽ0�"�

1

 n
, �6.28a�

�b�n
b��,"� = 4Ṽ1�"�

1

 n
, �6.28b�

�c�n
c��,"� = − 2Ṽ0�"�

1

 n
, �6.28c�

where Ṽ0�"�= Ṽ�" , i , i� and Ṽ1�"�= Ṽ�" , i+ex , i�= Ṽ�" , i
+ey , i�.

The diagram 13�d� has to be considered carefully. It con-
tains three diffusons: one “central” diffuson 1 / ��+"+ n�
describing diffusion through the single grain and two “adja-
cent” diffusons 1 /" renormalizing the interaction vertices.
In the general case of arbitrary compared to � temperatures
T, the diagram 13�d� for the current-current correlation func-
tion �ab�� , i , j� corresponds to the process of virtual diffu-
sion, when an electron, “created” at the contact �j+b , j� by
the applied bias, becomes diffusively, without additional ap-

plied bias, to the contact �i+a , i�, thus contributing to the
current. Only in the limit T�� the main contribution comes
from the closest contacts of a single grain. This is a virtual
process, since for a real electron its charge would be
screened.

Accounting for tunneling in the diagram 13�d�, one
should, in principle, replace each one of the three diffusons
by the “exact” diffuson D �Eq. �4.3��. However, in the lowest
nonvanishing in gT /g0
� /ETh	1 order it is sufficient to

leave the nonzero-mode diffuson D̄�0,r ,r�� �Eq. �4.21�� in
only one of the grains and retain only the zero modes
1 / ��"�V� in the rest of the grains.

One possibility is to leave the “central” diffuson as it is in

Fig. 13, i.e., as a nonzero-mode diffuson D̄�� ,r ,r�� of a
single grain, and to take “adjacent” diffusons as zero-mode
diffusons D0�" , i , j� �Fig. 15�d��. This gives the contribution
analogous to Eq. �6.7d�,

�d�n
d��,"� = 2Ṽ2�"�

1

 n
, �6.28d�

where Ṽ2�"�= Ṽ�" , i+ex , i+ey�. The rest of the diagrams
arising from the diagram 13�d� are discussed in the next sec-
tion.

Let us sum the contributions �6.28a�, �6.28b�, �6.28c�, and
�6.28d�. For the corresponding correction

��xy��� =
gT

2

�
�
n�0

fnT �
"�0

$�," �
i=a,b,c,d

�i�n
�i���,"�

to the bare current-current correlation function �xy
�0���� �Eq.

�5.10�� we obtain

��xy��� = − 2
gT

2

�
�
n�0

fnT �
"�0

$�,"

!
1

 n
�3Ṽ0�"� − 2Ṽ1�"� − Ṽ2�"�� . �6.29�

Compare the correction �6.29� with the correction �6.17� ob-
tained in the regime T��, in which " ,T	ETh was also
assumed. Equation �6.29� differs from Eq. �6.17� only by
having D0�" ,q�=1 / �"+�q� instead of 1 /" for the diffu-
sons renormalizing the interaction vertices. This difference is
relevant at T ,"�, when tunneling comes into play. Nev-
ertheless, the correction �6.29� still arises from the spatial
scales of the order of the grain size a, even if T	�. At
T ,"��, when one can neglect tunneling in Eq. �6.29�
�D0�" ,q�→1 /"�, the corrections �6.29� and �6.17� coin-
cide.

To obtain a temperature dependence of the correction
�6.29� we note that the summed over " expression is still
proportional to 1 /" in the wide range �"gTEc, giving a
logarithmic contribution. The question about the lower cutoff
is easily resolved: it equals T at T�� and � at T	�. Thus,
the lower cutoff is max�T ,��. To get a correct upper cutoff
we separate Eq. �6.29� artificially into two parts according to
the form of Eqs. �6.9� and �6.10�,
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��xy��� = ��xy
TA��� + ��xy

VD��� ,

where

��xy
TA��� = − 8

gT
2

�
�
n�0

fnT �
"�0

$�,"
1

 n

1

"2 �Ṽ0�"� − Ṽ1�"��

�6.30�

and

��xy
VD��� = 2

gT
2

�
�
n�0

fnT �
"�0

$�,"
1

 n

!
1

"2 �Ṽ2�"� + Ṽ0�"� − 2Ṽ1�"�� . �6.31�

Keeping in mind that Eqs. �6.30� and �6.31� must match with
Eqs. �6.9� and �6.10� at "�ETh, we have to attribute a cutoff
gTEc to ��xy

TA��� and min�gTEc ,ETh� to ��xy
VD���. Doing so,

for the corresponding corrections to HC we obtain

��xy
TA�T�
�xy

�0� = −
1

�gTd
ln� gTEc

max�T,��� for T  gTEc

�6.32�

and

��xy
VD�T�
�xy

�0� =
cd

4�gT
ln�min�gTEc,ETh�

max�T,�� � �6.33�

for Tmin�gTEc ,ETh�.
Let us write the total Coulomb interaction �CI� correction

��xy
CI to the Hall conductivity as

��xy
CI = ��xy

TA + ��xy
VD + ��xy

AA, �6.34�

where ��xy
TA and ��xy

VD are given by Eqs. �6.32� and �6.33� and
��xy

AA comes from the rest of the diagrams, arising from the
diagram 13�d� when we take tunneling into account. We con-
sider the latter “large-scale” contribution now.

3. Large-scale contribution

As explained above, in order to generalize the diagram
13�d� to include the temperatures T� one has to replace all
three diffusons in it by the zero-mode diffusons D0, and then

insert a nonzero-mode part D̄ �Eq. �4.21�� of the diffuson D
�Eq. �4.19�� into one of the grains. Having considered the
diagram 15�d�, we are left with the two following possibili-
ties.

�i� One can insert the nonzero-mode part D̄ �Eq. �4.21��
somewhere into the middle of one of the three diffusons D0.
One can show straightforwardly that all the contributions
from such diagrams, when summed up, cancel each other
exactly.

�ii� The less trivial possibility is to consider nonzero

modes D̄ in the grains directly adjacent to the contacts �i
+ex , i� and �j+ey , j�, corresponding to external current verti-
ces for the correlation function �xy�� , i , j�, i.e., in the grains
i+ex or i for contact �i+ex , i� and in the grains j+ey or j for
contact �j+ey , j�. However, the total contribution from such
diagrams also vanishes: for each diagram of this type there
exists another diagram, the contribution of which is exactly
opposite and, consequently, their sum is zero. One of such
pairs are the diagrams 16�d1� and 16�d2� �shown Fig. 16�,
their contributions to the current-current correlation function
being

��xy
d1��� =

gT
2

�
2T �

"�0
$�,"D�

! �
j
�D0�� + ",i,j + ex�Ṽ�",j − ey,i + ex� ,

��xy
d2��� = −

gT
2

�
2T �

"�0
$�,"D�

! �
j
�D0�� + ",i,j − ey�Ṽ�",j − ex,i + ex� .

Here D� is the nonzero-mode intragrain diffuson connecting
contacts in the counterclockwise direction, i.e., in the direc-
tion of the edge drift. Using the translational invariance and
symmetry in each component of the zero-mode diffuson D0

and the screened Coulomb interaction Ṽ, e.g., that D0�" , i
− j�=D0�" , ix− jx , iy − jy�=D0�" , jx− ix , iy − jy�, we obtain that
the sum over j in ��xy

d2��� is identical to the one in ��xy
d1���,

and thus the contributions cancel each other,

FIG. 16. Diagrams for the interaction corrections to Hall conductivity arising from large spatial scales at arbitrary compared to �
temperatures T. The diagrams �d1� and �d2� cancel each other leading to the vanishing “Altshuler-Aronov” correction to the Hall conduc-
tivity: ��xy

AA=0.
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��xy
d1��� + ��xy

d2��� = 0.

Therefore, we obtain that the total contribution from the
diagrams of types �i� and �ii� vanishes identically,

��xy
AA = 0. �6.35�

As a result, all nonvanishing contributions to HC at arbi-
trary compared to � temperatures T are given by the dia-
grams 15�a�, 15�b�, 15�c�, and 15�d�, which lead to the cor-
rections �6.32� and �6.33�. Note that these contributions arise
from the spatial scales of the order of the grain size a, even
for temperatures T	�. On the contrary, the eventually van-
ishing contributions of the diagrams of types �i� and �ii� �as
16�d1� and 16�d2�� arise from the spatial scales exceeding a.
The reason is that in these diagrams the contacts with exter-
nal tunneling vertices are connected by the diffuson
D0�" ,q�, which “size” in the real space is determined by the
thermal length LT

*=	�a2 /T. In case of low temperatures T
	�, the thermal length LT

*�a can exceed the grain size a
significantly.

It is always instructive to compare the results for a granu-
lar metal with those for an ordinary homogeneously disor-
dered metal �HDM�. For quantities arising from large spatial
scales �i.e., much greater than the grain size a for granular
metals and the mean-free path for diffusive HDMs� one ex-
pects correspondence between the two, since at such scales
the microscopic structure of the system becomes irrelevant.
The first-order Coulomb interaction correction ��xy to Hall
conductivity of HDM was first studied in Ref. 17 and the
correction was found to vanish, ��xy =0. So, indeed, our re-
sult �6.35� for the “large-scale” contribution ��xy

AA agrees
with that for HDMs.

Note that even our approach of calculating ��xy
AA is quite

similar to that of Ref. 17. The authors of Ref. 17 calculated
��xy perturbatively in magnetic field H �assuming �H�0	1�
by inserting “magnetic vertex” − e

mcAp̂ in all possible ways

into the diagrams for zero magnetic field. �i� Insertions of
magnetic vertex into the diffusons were found to cancel and
�ii� insertions of magnetic vertex into the block of Green’s
functions at the current vertices �Fig. 6 in Ref. 17� were
found to cancel. These two steps resemble those �i� and �ii�
of our approach, insertion of magnetic vertex corresponding

to insertion of nonzeromode intragrain diffuson D̄, which
contains all information about magnetic field, into the zero-
mode “large-scale” diffusons D0.

We want to stress that the “large-scale” AA contribution
��xy

AA is not any different physically from the “short-scale”
VD contribution ��xy

VD. They both correspond to the process,
when the electron traverses diffusively from the contact �j
+ey , j� to the contact �i+ex , i�. It just happens that the con-
tribution ��xy

VD from the diffusion processes through a single
grain does contribute to HC, whereas the total contribution
��xy

AA to HC from the diffusion through more than one grain
vanishes.

As a result of Secs. VI C 2 and VI C 3, we obtain that at
arbitrary temperatures T, the total Coulomb interaction cor-
rection ��xy

CI �Eq. �6.34�� to the Hall conductivity is given by
two short-scale contributions ��xy

TA �Eq. �6.32�� and ��xy
VD

�Eq. �6.33��, whereas the large-scale contribution ��xy
AA=0

�Eq. �6.35�� vanishes in agreement with the theory of homo-
geneously disordered metals.17 For the discussion of the cor-
responding corrections ��xy

TA, ��xy
VD, and ��xy

AA to the Hall re-
sistivity

�xy =
�xy

�xx
2 ,

the reader is referred to the results section II starting from
Eq. �2.9�.

VII. WEAK LOCALIZATION EFFECTS

The Coulomb interaction between the electrons is not the
only source of quantum contributions to the conductivity

FIG. 17. �a� Diagrams for the “bare” classical Hall conductivity �xy
�0� �Eqs. �1.5� and �5.22�� of the granular metal in the limit of

frequencies � /ETh→0, see Figs. 7 and 8. The contact s1 is connected to the contact s0 by the intragrain diffuson �gray stripe�. The same
contributions from the contacts s2 ,s3 ,s4 have to be taken into account �Eq. �5.22��. �b� Diagrams describing the weak localization correction
to the conductance GT of the tunnel contact. A diagram with the Cooperon C0 �rendered with lines stripe� flipped down and the same two
diagrams for the second contact also have to be considered. �c� An example of a diagram for the weak localization correction to the Hall
resistance RH of the grain, which is expressed through the intragrain diffuson D�� ,r ,r�� �Eqs. �4.8� and �4.17��. The diagram contributes to
the renormalization of the diffusion coefficient D0 �Eq. �4.8��, the complete set of such diagrams shown in Fig. 18. Weak localization
corrections to the boundary condition �4.17� must also be taken into account, see Fig. 19.
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process. Another quantum effect setting in at sufficiently low
temperatures is weak localization �WL�, which is due to the
interference of electrons moving along self-intersecting tra-
jectories.

The first order in the inverse tunneling conductance 1 /gT
WL correction ��xx

WL to the longitudinal resistivity of a granu-
lar metal, including its dependence on the magnetic field H
�magnetoresistance�,15,16 was studied in Refs. 14–16. Being
divergent for two-dimensional samples39 �granular films con-
sisting of one of a few grain monolayers�, the WL correction
��xx

WL exhibits a universal behavior at lowest temperatures T
and magnetic fields H, in agreement with the theory of ordi-
nary homogeneously disordered metals. As T or H are in-
creased or if the sample is three dimensional, the correction
��xx

WL becomes dependent on the granular structure of the
system. In the latter regime, however, the relative correction
is already quite small and does not exceed 1 /gT.

In this section we study the effects of weak localization
on the Hall transport in a granular metal. We calculate the
first-order in 1 /gT weak localization corrections to the Hall
conductivity and resistivity and find that both for 2D and 3D
arrays the correction to the Hall resistivity vanishes identi-
cally,

��xy
WL = 0.

This result is in agreement with the one for homogeneously
disordered metals obtained in Refs. 17 and 18. Being due to
an exact cancellation, it holds for arbitrary values of tem-
perature and magnetic field, both in the “homogeneous” re-
gime of very low T and H and in the “structure-dependent”
regime of higher values of T or H. Of course, this cancella-
tion occurs under certain assumptions, but they are the same
as those under which a nonvanishing correction ��xx

WL to the
longitudinal resistivity was obtained.14–16

A. Basic considerations

We remind the reader that the “bare” �i.e., without quan-
tum effects� Hall conductivity �xy

�0� of a granular metal is
given by Eq. �1.5�. This essentially classical result arises
from the set of diagrams shown in Figs. 7–9. In order not to
overcomplicate the calculations, we consider the range of
frequencies �	ETh in this section. This allows us to neglect
the intragrain Coulomb interaction when calculating the bare
Hall conductivity. The resulting simplification is that one
does not need to sum up the whole series shown in Fig. 9 and
taking into account only the diagrams of type Fig. 9�a� is
sufficient. Therefore, in the limit � /ETh→0 we need to study
the weak localization corrections to the diagrams in Figs. 7
and 8 only, see Fig. 17�a�.

In the first order in the inverse tunneling conductance
1 /gT, the weak localization corrections to the classical result
�1.5� are given by the sum of all “minimally crossed” dia-
grams. The “fan-shaped” ladder arising in such diagrams cor-
responds to the well-known particle-particle propagator
called “Cooperon,” which can be formally defined for a
granular metal in the same way as for an ordinary disordered
metal,

C��,ri,rj�� =
1

2��
�G�� + �,ri,rj��G��,ri,rj���U,t,

�� + ��� � 0. �7.1�

Here G’s are the “exact” Green’s functions in the Matsubara
technique and the average is taken over the intragrain and
tunnel contact disorder with the help of Eqs. �3.3� and �3.6�.
The points ri and rj� may belong to arbitrary distant grains i
and j.

One can calculate the Cooperon C�� ,ri ,rj�� using the
same diagrammatic rules as those for the diffuson discussed
in Sec. IV. They are governed by the condition pFa�1 �pF is
the Fermi momentum in the grains and a is the size of the
grains� that each grain is a “good” metallic sample. This
demands that the diagrammatic “paths” of the Green’s func-
tions G��+� ,ri ,rj�� and G�� ,ri ,rj�� through intermediate
grains and contacts coincide. Therefore, the full Cooperon
�7.1� is “composed” of the Cooperons �4.2� of isolated
grains.

Although in order to obtain nonvanishing Hall conductiv-
ity �1.5�, one is forced to take nonzero modes �Eq. �4.21�� of
the intragrain diffuson D�� ,r ,r�� �Eq. �4.19�� into account,
the zero modes in the Cooperons themselves do not drop out
from the expressions for WL corrections. Therefore due to
the small size of the grains one may use the “zero-mode”
approximation for the Cooperons, i.e., to leave only the zero
mode 1 / ��V� in each grain in the expression for the Coop-
eron �4.2�. To do so, however, the condition �1.2� alone is not
sufficient, since the Cooperons are sensitive to the magnetic
field, and in the presence of the magnetic field an additional
condition must be met. Namely, the magnetic flux Ha2

threading through each grain must be smaller than the flux
quantum c /e,

e

c
Ha2 	 1. �7.2�

Under the conditions �1.2� and �7.2� the spatial depen-
dence of the intragrain Cooperon �4.2� coming from nonzero
modes can be neglected and one obtains

C��,r,r�� �
1

V
1

� + E�H�
,

where E�H�
D0� e
cHa�2 is the “mass term” acquired due to

dephasing by the magnetic field within the grain �D0 is the
intragrain diffusion coefficient defined after Eq. �4.8��. After
that, the Cooperon C�� ,ri ,rj�� �Eq. �7.1�� of the whole granu-
lar system depends on the grain indices i and j only and we
denote such “zero-mode” Cooperon as C0�� , i , j�. Its proper-
ties in the presence of the magnetic field were studied in
Refs. 15 and 16. Since our main result, the vanishing WL
correction to the Hall resistivity, does not depend on the
explicit form of C0�� , i , j�, we do not repeat these properties
here, reminding for reference only that in the absence of the
magnetic field and dephasing effects the expression for the
Cooperon reads
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C0��,i,j� = adddq

�2��d

eiaq�i−j�

� + 2��
�

�1 − cos�q�a��
.

Here, the integration is done over the first Brillouin zone q
� �−� /a ,� /a�d and �=x ,y in two dimensions and �
=x ,y ,z in three dimensions. Note, that we have removed the
inverse grain volume 1 /V from the definition of C0�� , i , j�.

We can now proceed with the calculation of the weak
localization corrections. Conveniently, the contributions
from the diagrams giving first-order corrections to HC �xy

�0�

are factorized according to the structure of Eq. �1.5�, i.e.,
each diagram can be attributed to the renormalization of ei-
ther the tunneling conductance GT of the contact or the Hall
resistance RH of the grain. Below we study these two types
of corrections separately.

B. Weak localization correction to GT

First consider the diagram in Fig. 17�b�. In this diagram
the Cooperon C0�� , i+ex , i� connects the points belonging to
two sides �in the grains i+ex and i� of the same contact �i
+ex , i�. Note that such diagrams arise form the “particle-
particle pairing” Xi+ex,i���Xi+ex,i��1� �see Eqs. �3.4� and
�3.11�� of the tunneling operators at the considered contact
�i+ex , i�, whereas in the diagram in Fig. 17�a� for the bare
conductivity we have “particle-hole pairing”
Xi+ex,i���Xi,i+ex

��1�.
Since the other elements of the diagram in Fig. 17�b�

remain unaffected, this diagram can be attributed to the
renormalization of the conductance GT of the tunnel contact
in Eq. �1.5�. Indeed, considering the same diagrams for the
other contact in Fig. 17�a�, for the relative correction to HC
�xy

�0� �Eq. �1.5�� we obtain

��xy
WL�1����
�xy

�0� = 2
�GT

WL���
GT

, �7.3�

where

�GT
WL���
GT

=
1

2��V
�C0��,i + a,i� + C0��,i,i + a�� , �7.4�

and a=ex or a=ey �assuming the square or cubic symmetry
of the lattice, we do not distinguish between the x and y
directions�. In Eq. �7.3�, the factor 2 stands for two contacts
according to the square GT

2 in Eq. �1.5�. As expected, the
expression �7.4� for the relative correction to GT obtained
from the diagrams in Fig. 17�b� coincides with the one ob-
tained from calculating WL correction to the longitudinal
conductivity �xx

�0� in Refs. 14–16,

��xx
WL���
�xx

�0� =
�GT

WL���
GT

. �7.5�

Since the correction �7.3� contributes solely to the renor-
malization of the tunneling conductance GT and the bare HR
�xy

�0� �Eq. �2.3�� simply does not contain GT, the correspond-
ing WL correction to HR from the diagrams in Fig. 17�b�
vanishes,

��xy
WL�1����
�xy

�0� =
��xy

WL�1����
�xy

�0� − 2
��xx

WL���
�xx

�0� � 0. �7.6�

C. Weak localization correction to RH

Now let us consider the diagram shown in Fig. 17�c�. This
diagram describes the effect of localization on the intragrain
diffuson D�� ,r ,r�� and, eventually, contributes to the renor-
malization of the Hall resistance RH of the grain, expressed
through the diffuson according to Eq. �5.21�. The aim of this
section is to show that the WL correction to the Hall resis-
tance �5.21� arising from all such diagrams actually vanishes,

�RH
WL = 0. �7.7�

1. Intragrain diffuson renormalized by weak localization
effects

We remind the reader that the intragrain diffuson
D�� ,r ,r�� is defined formally by Eq. �4.1� as a product of
two Green’s functions averaged over the intragrain disorder.
Since neglecting localization effects the calculation of the
diffuson D�� ,r ,r�� is reduced to the solution of Eqs. �4.8�
and �4.15�, our task now is to find out how these equations
are affected by weak localization. It is very important that for
a finite system with boundary �grain� one has to renormalize
not only the diffusion equation �4.8� itself, but also the
boundary condition �4.15� for the diffuson.

We start by considering the diffusion equation �4.8�. In a
bulk metal effects of localization on the diffusive electron
motion were first studied in Ref. 32 by Gorkov, Larkin, and
Khmelnitski. It was shown that the diffusion equation �4.8�
remains valid, but the diffusion constant D0 is renormalized.
The diagrams describing renormalization of D0 are obtained
by inserting the “fan-shaped” ladder into the ordinary ladder
describing the diffuson D�� ,r ,r��, as shown in Fig. 18.
Their calculation is more challenging for a granular system
due to the possibility of tunneling between the grains. Nev-
ertheless, under the assumed conditions �1.2� and �7.2� we
obtain a result essentially the same as that of Ref. 32 for the
renormalized diffusion coefficient,

D̃0��� = D0�1 − c���� , �7.8�

where

c��� =
1

��V
C0��,i,i� �7.9�

is given by the zero-mode Cooperon with coinciding points.
Since the characteristic scale of the Cooperon is C0�� , i , i�
�1 /� and the mean level spacing in each grain is �
=1 / ��V�, the relative correction c����� /�=1 /gT is propor-
tional to the inverse intergrain conductance 1 /gT.

More interestingly, for a finite system one also has to
consider the effect of WL on the boundary condition �4.15�.
The sensitivity of the boundary condition to WL effects is
crucial for the Hall transport, since, as it was discussed in

Sec. V, the differences D̄↗− D̄↘ and D̄↙− D̄↖ in Eq. �5.21�
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for RH are nonvanishing solely due to the presence of the
magnetic field in Eq. �4.15�. Since the boundary condition
�4.15� is determined by the correlation function �4.14�, we
need to find WL correction to this quantity. The correspond-
ing diagrams are shown in Fig. 19. Their calculation is some-
what cumbersome, but straightforward, and yields the fol-
lowing result for the renormalized correlation function

�j�r�� = �
����1 − c���� +
e�0

mc
��� H �1 − 2c����� , �7.10�

where c��� is given by Eq. �7.9�.
As a result, replacing D0 by D̃0��� �Eq. �7.8�� in Eq. �4.8�

and �j�r��0 by �j�r�� �Eq. �7.10�� in Eq. �4.15�, we obtain
that the renormalized diffuson satisfies the equation

�� − D0�1 − c�����r
2�D��,r,r�� = ��r − r�� �7.11�

and the boundary condition

��n · �rD��r�S = �H�0�1 − c������t · �rD��r�S, �7.12�

instead of Eqs. �4.8� and �4.17�, respectively. In Eq. �7.12�
we put �1−2c���� / �1−c�����1−c���, since c���	1
within the validity of the perturbation approach.

2. Vanishing weak localization correction RH

Now let us see how the obtained renormalizations affect
the Hall resistance RH �Eq. �5.21�� of the grain. Although
Eqs. �7.11� and �7.12� cannot be solved for an arbitrary shape
of the grains, this is not actually necessary and the needed
conclusions about RH can be drawn based on the following
rather simple analysis.

The characteristic value of D̄�’s in Eq. �5.21� can be es-
timated from Eq. �7.11� as

D̄� 

1

a3

1

D0�1 − c����/a2 . �7.13�

The differences D̄↗− D̄↘= D̄↙− D̄↖ in Eq. �5.21�, however,
require a more accurate estimate, since they are nonzero only
in the presence of magnetic field H�0 due to the directional

asymmetry D̄�r ,r��� D̄�r� ,r�, and vanish for H=0, when

D̄�r ,r��= D̄�r� ,r�. The effect of magnetic field is contained
in the right-hand side �RHS� of the boundary condition

�7.12�. Since the difference D̄↗− D̄↘ is linear in H for
�H�0	1, it is linear in the factor �H�0�1−c���� in the

FIG. 18. Diagrams for the weak localization correction to the diffusion coefficient D0 �Eqs. �7.8� and �7.9�� of the intragrain diffuson
D�� ,r ,r�� �gray blocks�. Diagrams in the upper row form a Hikami box, the twisted rendered with lines block denotes the Cooperon
C0�� , i , i�. Diagrams in the lower row are of the same order as the sum of those in the upper row and are missing in the ladder summation
for C0�� , i , i�.

FIG. 19. Diagrams for the weak localization corrections �Eq. �7.10�� to the current-coordinate correlation function �j�r��0 �Eqs. �4.14�
and �4.16��. Diagrams in the upper row forming a Hikami box describe the correction to the magnetic-field-independent part of �j�r��0 �Fig.
5�a��. Diagrams in the lower row describe the correction to the linear in the magnetic field part of �j�r��0 �Fig. 5�b��. Similar insertions of
the magnetic vertex into the right block of Green’s functions and the upside-down flip of such diagrams must also be considered.
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RHS of Eq. �7.12�. Combining this fact with Eq. �7.13�, we
obtain

D̄↗ − D̄↘ 

1

a3

�H�0�1 − c����
D0�1 − c����/a2 =

1

a3

�H�0

D0/a2 , �7.14�

where the proportionality coefficient depends on the grain
geometry only. We see that the factors �1−c���� in the nu-
merator and denominator arising from the boundary condi-
tion �7.12� and differential equation �7.11�, respectively, can-
cel each other. Therefore, the Hall resistance RH �Eq. �5.22��
of the grain remains unaffected by weak localization effects
and the correction �RH

WL to it vanishes �Eq. �7.7��. Conse-
quently, the corresponding contributions to the Hall conduc-
tivity and resistivity vanish,

��xy
WL�2����
�xy

�0� =
��xy

WL�2����
�xy

�0� =
�RH

WL

RH
� 0. �7.15�

D. Discussion

Combining Eqs. �7.6� and �7.15�, we obtain that the first
order in the inverse tunneling conductance 1 /gT weak local-
ization correction to the Hall resistivity of a granular metal
vanishes identically,

��xy
WL = ��xy

WL�1� + ��xy
WL�2� = 0. �7.16�

The weak localization correction to the Hall conductivity
�Eqs. �7.3�, �7.5�, and �7.15��

��xy
WL = ��xy

WL�1� + ��xy
WL�2� = ��xy

WL�1�

originates from the renormalization of the tunneling conduc-
tance GT only, the corresponding relative correction being
twice as large as that to the longitudinal conductivity

��xy
WL

�xy
�0� = 2

��xx
WL

�xx
�0� .

The WL correction ��xx
WL was studied in Refs. 14–16.

Whether the exact cancellation �2.19� obtained in the first
order in 1 /gT is violated in higher orders or not remains a
question of a separate investigation.40 What is important,
however, is that in the same first order in 1 /gT �i� logarithmic
temperature-dependent corrections to both the longitudinal
�xx �Refs. 4 and 5� and Hall �xy �this paper� resistivities due
to the Coulomb interaction exist; �ii� weak localization cor-
rection ��xx

WL�H� to �xx exists,14–16 being sensitive to the mag-
netic field.15,16 Therefore, we come to the conclusion that in
the leading order in 1 /gT, in which quantum effects do come
into play, the effect of weak localization on the Hall resistiv-
ity is absent �Eq. �2.19��.

Experimentally, our result �2.19� may be tested by mea-
suring the dependence of the Hall coefficient �xy�H� /H on
the magnetic field H. Since the weak localization correction
��xx

WL�H� is sensitive to the magnetic field, Eq. �2.19� states
that in the range of sufficiently low magnetic fields H, in
which the relative change in the longitudinal resistivity

�xx�H� of the order of 1 /gT due to localization effects is
predicted,15,16 no comparable change in �xy�H� /H is ex-
pected.

VIII. CONCLUSION

In conclusion, we presented a theory of the Hall effect in
granular metals. In spite of its importance, this question has
not been addressed before. It turned out that considering only
the zero intragrain spatial harmonics of the diffusons, which
was very successful in describing the longitudinal
conductivity,3–5 is not sufficient for calculating the Hall con-
ductivity and we were forced to also take the nonzero har-
monics into account. Proceeding in this way, we have shown
that at high enough temperatures the Hall resistivity is given
by the classical expression, from which one can extract the
effective carrier density of the system.

At lower temperatures, quantum effects of the Coulomb
interaction and weak localization come into play and we
have calculated the first order in the inverse tunneling con-
ductance corrections. We found that for granular metals there
exist quantum contributions, analogous to those in ordinary
homogeneously disordered metals, as well as contributions
specific to granular metals only that are absent in conven-
tional disordered metals. The latter are, in fact, more signifi-
cant and come from short spatial scales of the order of the
grain size. They are due to the Coulomb interaction and yield
a logarithmic temperature dependence of the Hall conductiv-
ity and resistivity in a wide temperature range.

Providing an outlook for future studies, we emphasize
that the results for these first-order short-scale corrections
�Eqs. �2.4�, �2.5�, and �2.17�� are valid as long as their rela-
tive contribution is small. One could try to account for
higher-order corrections using a renormalization group
analysis �since the contributions are logarithmic�. In order to
write down proper renormalization group equations, methods
more sophisticated than the present diagrammatic approach
are needed.

Concerning the experimental situation related to the
theory developed here, the logarithmic dependence �xx�T�
=R1−R2 ln T of the longitudinal resistivity in good conduct-
ing �gT�1� granular materials, corresponding to the loga-
rithmic renormalization4,5 of the integrain tunneling conduc-
tance GT �Eq. �2.12��, has been observed experimentally �see
Refs. 41�. Clearly, measurements of the Hall resistivity �xy of
such granular samples could be also performed and our
theory could be thus tested. Unfortunately, the known to us
experimental papers �Refs. 42� on the conventional Hall ef-
fect in granular materials mostly deal with the systems in the
regime of low tunneling conductance gT	1 or with sparse
granular arrays. This does not allow us to make a detailed
comparison now. We mention that our theory may be also
applied to indium-tin-oxide �ITO� materials �see, e.g., Refs.
43�. Another related effect is the anomalous Hall effect in
ferromagnetic granular materials �see, e.g., Ref. 44�.

We hope that more experiments on this subject will be
done in the nearest future and that Hall measurements will
evolve into an important method of characterization of
granular materials.
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